Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Apr 11;59:163–171. doi: 10.1016/S0079-6123(08)63861-3

Subacute Sclerosing Panencephalitis: Are Antigenic Changes Involved in Measles Virus Persistence?

Michael J Carter 1, V Ter Meulen 1
PMCID: PMC7133201  PMID: 6198679

Abstract

Subacute sclerosing panencephalitis (SSPE) is a rare, fatal complication of measles virus infection arising years after acute measles. During this chronic disease process, characteristic measles virus inclusions are present in the cells of the central nervous system (CNS). During SSPE, infectious virus is not present either in the CNS or other tissues, but it has proved possible, in some cases, to rescue a measles-like virus by cocultivation techniques. These viruses may differ from measles virus, and from each other, but no single, stable property differentiates them. Differences between various strains of measles virus are of a similar magnitude to those observed between SSPE and measles viruses. This chapter discusses experiments to differentiate these agents using monoclonal antibodies raised against purified measles virus Edmonston. In no case is an isolate of measles virus available from the acute phase of infection preceding the develoment of SSPE by the same patient. This event is modeled in vitro by using a tissue culture of Vero cells persistently infected with an SSPE virus “Lec,” and this system is compared to other carrier cultures. These in vitro persistent infections differ from any in vivo persistence, because they are maintained in the absence of an immune response and may provide an insight into the importance of that phenomenon in the development of SSPE.

References

  1. Agnarsdottir G. Subacute sclerosing panencephalitis. In: Waterson A.P., editor. Recent Advances in Clinical Virology. Churchill Livingstone; Edinburgh: 1977. pp. 21–49. [Google Scholar]
  2. Barbanti-Brodano G., Oyanagi S., Katz M., Koprowski H. Presence of two different viral agents in brain cells of patients with subacute sclerosing panencephalitis. Proc. Soc. exp. Biol. (N.Y.) 1970;134:230–236. doi: 10.3181/00379727-134-34765. [DOI] [PubMed] [Google Scholar]
  3. Barret T., Wolstenholme A.J., Mahy B.W.J. Transcription and replication of influenza virus RNA. Virology. 1979;98:211–225. doi: 10.1016/0042-6822(79)90539-7. [DOI] [PubMed] [Google Scholar]
  4. Birrer M.J., Udem S., Nathenson S., Bloom B.R. Antigenic variants of measles virus. Nature (Lond.) 1981;293:67–69. doi: 10.1038/293067a0. [DOI] [PubMed] [Google Scholar]
  5. Bonner W.M., Laskey R.A. A film detection method for tritium labelled proteins and nucleic acids in polyacrylamide gels. Europ. J. Biochem. 1974;46:83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  6. Byington D.P., Johnson K.P. Subacute sclerosing panencephalitis virus in immunosuppressed adult hamsters. Lab. Invest. 1975;32:91–97. [PubMed] [Google Scholar]
  7. Connolly J.H., Allen I.V., Hurwitz L.J., Miller J.H.D. Measles-virus antibody and antigen in subacute sclerosing panencephalitis. Lancet. 1967;1:542–544. doi: 10.1016/s0140-6736(67)92117-4. [DOI] [PubMed] [Google Scholar]
  8. Doi Y., Samse T., Nakajima M., Okawa S., Katoh T., Itoh H., Sato T., Oguchi K., Kumanishi T., Tsubaki T. Properties of a cytopathic agent isolated from a patient with subacute sclerosing panencephalitis in Japan. Jap. J. Med. Sci. Biol. 1972;25:321–333. doi: 10.7883/yoken1952.25.321. [DOI] [PubMed] [Google Scholar]
  9. Fraser K.B., Martin S.J. Measles Virus and its Biology. Academic Press; London: 1978. [Google Scholar]
  10. Freeman J.M., Magoffin R.L., Lennette E.H., Herndon R.M. Additional evidence of the relations between subacute inclusion-body encephalitis and measles virus. Lancet. 1967;2:129–131. doi: 10.1016/s0140-6736(67)92965-0. [DOI] [PubMed] [Google Scholar]
  11. Fujinami R.S., Oldstone M.B.A. Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature (Lond.) 1979;279:529–530. doi: 10.1038/279529a0. [DOI] [PubMed] [Google Scholar]
  12. Gould E.A., Linton P.E. The production of a temperature-sensitive persistent measles virus infection. J. gen. Virol. 1975;28:21–28. doi: 10.1099/0022-1317-28-1-21. [DOI] [PubMed] [Google Scholar]
  13. Gould J.J., Almeida J.D. Antibody modification of measles in vitro infection. J. med. Virol. 1977;1:111–118. doi: 10.1002/jmv.1890010204. [DOI] [PubMed] [Google Scholar]
  14. Hall W.W., Choppin P.W. Evidence for the lack of synthesis of the M polypeptide of measles virus in brain cells from SSPE. Virology. 1979;99:443–447. doi: 10.1016/0042-6822(79)90026-6. [DOI] [PubMed] [Google Scholar]
  15. Haspel M.V., Knight P.R., Duff R.G., Rapp F. Activation of a latent measles virus infection in hamster cells. J. Virol. 1973;12:690–695. doi: 10.1128/jvi.12.4.690-695.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holland J.J., Grabau E.A., Jones C.L., Sember B.L. Evolution of multiple genome mutations during long-term persistent infection by vesicular stomatitis virus. Cell. 1979;16:495–504. doi: 10.1016/0092-8674(79)90024-2. [DOI] [PubMed] [Google Scholar]
  17. Johnson K.P., Feldman E.G., Byington D.P. Effect of neonatal thymectomy on experimental subacute sclerosing panencephalitis in adult hamsters. Infect. Immun. 1975;12:1464–1469. doi: 10.1128/iai.12.6.1464-1469.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson K.P., Norrby E., Swoveland P., Carrigan D.R. Experimental subacute sclerosing panencephalitis. Selective disappearance of measles virus matrix protein from the central nervous system. J. infect. Dis. 1981;144:161–168. doi: 10.1093/infdis/144.2.161. [DOI] [PubMed] [Google Scholar]
  19. Joseph B.S., Oldstone M.B.A. Immunologic injury in measles virus infection. II. Suppression of immune injury through antigenic modulation. J. exp. Med. 1975;142:864–876. doi: 10.1084/jem.142.4.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ju G., Udem S., Razer-Zisman B., Bloom B. Isolation of a heterogenous population of temperature sensitive mutants of measles virus from persistently infected human lymphoblastoid cell lines. J. exp. Med. 1978;147:1637–1652. doi: 10.1084/jem.147.6.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lamb R.A., Etkind P.R., Choppin P.W. Evidence for a ninth influenza viral polypeptide. Virology. 1978;91:60–78. doi: 10.1016/0042-6822(78)90355-0. [DOI] [PubMed] [Google Scholar]
  23. Laver W.G., Air G.M., Webster R.G., Gerhard W., Ward C.W., Dopheide T.A.A. Antigenic drift in type A influenza virus: sequence differences in the hemagglutinin of Hong Kong (H3N2) variants selected with monoclonal hybridoma antibodies. Virology. 1979;98:226–237. doi: 10.1016/0042-6822(79)90540-3. [DOI] [PubMed] [Google Scholar]
  24. Norrby E. A carrier cell line of measles virus in Lu 106 cells. Arch. ges. Virusforsch. 1967;20:15–224. doi: 10.1007/BF01241275. [DOI] [PubMed] [Google Scholar]
  25. Norrby E., Gollmar Y. Identification of measles virus-specific hemolysisinhibiting antibodies separate from hemagglutination-inhibiting antibodies. Infect. Immun. 1975;11:231–239. doi: 10.1128/iai.11.2.231-239.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Payne F.E., Baublis J.V. Decreased reactivity of SSPE strains of measles virus with antibody. J. infect. Dis. 1973;127:505–511. doi: 10.1093/infdis/127.5.505. [DOI] [PubMed] [Google Scholar]
  27. Pelham H.R.B., Jackson R.J. An efficient mRNA dependent translation system from reticulocyte lysates. Europ. J. Biochem. 1976;67:247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  28. Rima B.K., Lappin S.A., Roberts M.W., Martin S.J. A study of phosphorylation of the measles membrane protein. J. gen. Virol. 1981;56:447–450. doi: 10.1099/0022-1317-56-2-447. [DOI] [PubMed] [Google Scholar]
  29. Rustigian R. Persistent infection of cells in culture by measles virus. I. Development and characteristics of Hela sublines persistently infected with complete virus. J. Bacteriol. 1966;92:1792–1804. doi: 10.1128/jb.92.6.1792-1804.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Siddell S.G., Wege H., Barthel A., ter Meulen V. Coronavirus JHM: cell-free synthesis of structural protein p60. J. Virol. 1980;17:10–17. doi: 10.1128/jvi.33.1.10-17.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stephenson J.R., ter Meulen V. Antigenic relationships between measles and canine distemper virus. Comparison of immune response in animals and humans to individual virus-specific polypeptides. Proc. nat. Acad. Sci. U.S.A. 1979;76:6601–6605. doi: 10.1073/pnas.76.12.6601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stephenson J.R., Siddell S.G., ter Meulen V. Persistent and lytic infections with SSPE virus; a comparison of the synthesis of virus-specific polypeptides. J. gen. Virol. 1981;57:191–197. doi: 10.1099/0022-1317-57-1-191. [DOI] [PubMed] [Google Scholar]
  33. Ter Meulen V., Müller D., Joppich C. Fluorescence microscopy studies of brain tissue from a case of subacute progressive panencephalitis. Germ. Med. Mth. 1967;12:438–441. [Google Scholar]
  34. Ter Meulen V., Enders-Ruckle G., Müller D., Joppich G. Immunhistological, microscopical and neurochemical studies on encephalitides. III. Subacute progressive panencephalitis. Virological and immuno-histological studies. Acta Neuropath. 1969;12:244–259. doi: 10.1007/BF00687648. [DOI] [PubMed] [Google Scholar]
  35. Ter Meulen V., Katz M., Käckell Y.M. Properties of SSPE virus; tissue culture and animal studies. Ann. Clin. Res. 1973;5:293–297. [PubMed] [Google Scholar]
  36. Ter Meulen V., Löffler S., Carter M.J., Stephenson J.R. Antigenic characterization of measles and SSPE virus haemagglutinin by monoclonal antibodies. J. gen. Virol. 1981;57:357–364. doi: 10.1099/0022-1317-57-2-357. [DOI] [PubMed] [Google Scholar]
  37. Ter Meulen V., Stephenson J.R., Kreth H.W. Subacute sclerosing panencephalitis. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol. 18. Plenum Press; 1983. (Comprehensive Virology). in press. [Google Scholar]
  38. Thormar H., Mehta P.D., Brown H.R. Comparison of wild-type and subacute sclerosing panencephalitis strains of measles virus. Neurovirulence in ferrets and biological properties in cell cultures. J. exp. Med. 1978;148:674. doi: 10.1084/jem.148.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wechsler S.L., Rustigian R., Stallcup K.C., Byers K.B., Winston S.H., Fields B.N. Measles virus-specific polypeptide synthesis in 2 persistently infected Hela cell lines. J. Virol. 1979;31:677–684. doi: 10.1128/jvi.31.3.677-684.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wechsler S.L., Weiner H.L., Fields B.N. Immune response in subacute sclerosing panencephalitis: reduced antibody response to the matrix protein of measles virus. J. Immunol. 1979;123:884–889. [PubMed] [Google Scholar]
  41. Wiktor T.J., Koprowski H. Antigenic variants of rabies virus. J. exp. Med. 1980;152:99–112. doi: 10.1084/jem.152.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wild T.F., Bernard A., Greenland T. Measles virus: evolution of a persistent infection in BGM cells. Arch. Virol. 1981;67:297–308. doi: 10.1007/BF01314833. [DOI] [PubMed] [Google Scholar]

Articles from Progress in Brain Research are provided here courtesy of Elsevier

RESOURCES