Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 22;40(4):959–968. doi: 10.1016/0091-3057(91)90112-F

Cocaine: On-line analysis of an accumbens amine neural basis for psychomotor behavior

Patricia A Broderick a,b
PMCID: PMC7133205  PMID: 1816582

Abstract

Dose-response studies on subcutaneous cocaine were done to ascertain its effects in nucleus accumbens in dopaminergic and serotonergic neuronal circuitry in the behaving rat with in vivo voltammetry. Simultaneously, and at each dose of cocaine, unconditioned psychomotor stimulant behavior induced by cocaine was studied in terms of multiple concurrent measures of spontaneous behavior and by activity patterns of locomotion. Time course studies showed that the neurochemical effects of cocaine (10, 20, and 40 mg/kg SC) significantly (p<0.001) increased accumbens synaptic concentrations of dopamine (DA) and concurrently and significantly (p<0.0001) decreased accumbens synaptic concentrations of serotonin (5-HT) in a dose response manner. Simulataneous behavioral time course studies showed that cocaine (10, 20, and 40 mg/kg SC) significantly (p<0.0001) increased ambulations (locomotor activity), fine movements (stereotypic movements of sniffing and grooming) and rearing behavior, while significantly decreasing agoraphobic behavior, as measured by a statistically significant increase in central ambulations (p<0.0001). The high dose of cocaine (40 mg/kg SC) significantly increased fine movements over those produced by the lower doses of cocaine (p<0.0002). One import of the findings is that the DA and 5-HT biogenic amine response occurs in a behavioral paradigm of psychomotor stimulation, which is a known measure of reinforcement. Another is that the biogenic amines DA and 5-HT are affected by cocaine in this reinforcement paradigm with exactly opposite directionality. Finally, acute cocaine administration is shown to produce a dose response inhibition of agoraphobia (fear),w hich is highly correlated (ϱ=.983, p<0.01) with the opposing effects of cocaine on the accumbens biogenic amines, DA and 5-HT.

Keywords: Cocaine, Dopamine, Serotonin, Nucleus accumbens, Freely moving rat, In vivo voltammetry (electrochemistry), Ambulations, Central ambulations, Rearing behavior, Fine movements, Activity pattern analyses, Psychomotor stimulant, Reinforcement, Agoraphobia

References

  • 1.Broderick P.A. Striatal neurochemistry of dynorphin-(1–13): In vivo electrochemical semidifferential analyses. Neuropeptides. 1987;10:369–386. doi: 10.1016/s0143-4179(87)90128-4. [DOI] [PubMed] [Google Scholar]
  • 2.Broderick P.A. Characterizing stearate probes in vitro for the electrochemical detection of dopamine and serotonin. Brain Res. 1989;495:115–121. doi: 10.1016/0006-8993(89)91224-9. [DOI] [PubMed] [Google Scholar]
  • 3.Broderick P.A. State-of-the-art microelectrodes for in vivo voltammetry. Electroanalysis. 1990;2:241–251. [Google Scholar]
  • Broderick P.A. In vivo voltammetric studies on release mechanisms for cocaine with γ-butyrolactone. Pharmacol. Biochem. Behav. 1991;40:969–975. doi: 10.1016/0091-3057(91)90113-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Church W.H., Justice J.B., Jr., Byrd L.D. Extracellular popamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine. Eur. J. Pharmacol. 1987;139:345–348. doi: 10.1016/0014-2999(87)90592-9. [DOI] [PubMed] [Google Scholar]
  • 5.Cunningham K.A., Lakoski J.M. Electrophysiological effects of cocaine and procaine on dorsal raphe serotonin neurons. Eur. J. Pharmacol. 1988;148:457–462. doi: 10.1016/0014-2999(88)90128-8. [DOI] [PubMed] [Google Scholar]
  • 6.deWit H., Wise R.A. Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide but not with the noradrenergic blockers, phentolamine or phenoxybenzamine. Can. J. Psychol. 1977;31:195–203. doi: 10.1037/h0081662. [DOI] [PubMed] [Google Scholar]
  • 7.DiChiara G., Imperato A. 7th ed. Vol. 85. 1988. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic systems of freely moving rats; pp. 5274–5278. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Douglas W.W. Histamine and 5-hydroxytryptamine (serotonin) and their antagonists. In: Gilman A.G., Goodman L., Rall T., Murad F., editors. The pharmacological basis of therapeutics. 7th ed. Macmillan Pub. Co; New York: 1985. pp. 604–638. [Google Scholar]
  • 9.Einhorn L.C., Johansen R.A., White F.J. Electrophysiological effects of cocaine in the mesoaccumbens dopamine systeem: studies in the ventral tegmental area. J. Neurosci. 1988;8:100–112. doi: 10.1523/JNEUROSCI.08-01-00100.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Fozard J.R., Mobarok Ali A.T.M., Newgrosh G. Blockade of serotonin receptors on autonomic neurons by (-)cocaine and some related compounds. Eur. J. Pharmacol. 1979;59:195–210. doi: 10.1016/0014-2999(79)90282-6. [DOI] [PubMed] [Google Scholar]
  • 11.Friedman E., Gershon S., Rotrosen J. Effects of acute cocaine treatment on the turnover of 5-hydroxytryptamine in the rat brain. Br. J. Pharmacol. 1975;54:61–64. doi: 10.1111/j.1476-5381.1975.tb07410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Galloway M.P. Neurochemical interactions of cocaine with dopaminergic systems. Trends Pharmacol. Sci. 1988;9:451–454. doi: 10.1016/0165-6147(88)90137-x. [DOI] [PubMed] [Google Scholar]
  • 13.Gawin F.H., Allen D., Hurnblestone B. Outpatient treatment of “crack” cocaine smoking with flupenthixol decanoate. Arch. Gen. Psychiatry. 1989;46:322–325. doi: 10.1001/archpsyc.1989.01810040028005. [DOI] [PubMed] [Google Scholar]
  • 14.Geyer M.A. Approaches to the characterization of drug effects on locomotor activity in rodents. In: Adler M.W., Cowan A., editors. Testing and evaluation of drugs of abuse. A. R. Liss; New York: 1990. pp. 81–99. [Google Scholar]
  • 15.Gold M.S., Byck R. Endorphins, lithium, and naloxone: their relationship to pathological and drug-induced manic-euphoric states. NIDA Res. Monogr. 1978;19:192–209. [PubMed] [Google Scholar]
  • 16.Iversen S.D. 5-HT and anxiety. Neuropharmacology. 1984;23:1553–1560. doi: 10.1016/0028-3908(84)90099-6. [DOI] [PubMed] [Google Scholar]
  • 17.Kalivas P.W., Duffy P. Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse. 1990;5:48–58. doi: 10.1002/syn.890050104. [DOI] [PubMed] [Google Scholar]
  • 18.Kelly P.H., Iversen S.D. Selective 6-OHDA induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant induced locomotor activity in rats. Eur. J. Pharmacol. 1976;40:45–56. doi: 10.1016/0014-2999(76)90352-6. [DOI] [PubMed] [Google Scholar]
  • 19.Nayak P.K., Misra A.L., Mule S.J. Physiological disposition and biotransformation of [3H] cocaine in acutely and chronically treated rats. J. Pharmacol. Exp. Ther. 1976;196:556–569. [PubMed] [Google Scholar]
  • 20.Pelligrino L.J., Cushman A.J. Appleton-Century-Crofts; New York: 1967. A stereotaxic atlas of the rat brain; p. 19. [Google Scholar]
  • 21.Pettit H.O., Pan H.T., Parsons L.H., Justice J.B., Jr. Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration. J. Neurochem. 1990;55:798–804. doi: 10.1111/j.1471-4159.1990.tb04562.x. [DOI] [PubMed] [Google Scholar]
  • 22.Porrino L.J., Ritz M.C., Goodman N.L., Sharpe L.G., Kuhar M.J., Goldberg S.R. Differential effects of the pharmacological manipulation of serotonin system on cocaine and amphetamine self-administration in rats. Life Sci. 1989;45:1529–1535. doi: 10.1016/0024-3205(89)90418-9. [DOI] [PubMed] [Google Scholar]
  • 23.Post R.M., Kopanda R.T. Cocaine, kindling and psychosis. Am. J. Psychiatry. 1976;133:627–634. doi: 10.1176/ajp.133.6.627. [DOI] [PubMed] [Google Scholar]
  • 24.Pradhan S.N., Bhattacharyya A.K., Pradhan S. Serotonergic manipulation of the behavioral effects of cocaine in rats. Commun. Psychopharmacol. 1978;2:481–486. [PubMed] [Google Scholar]
  • 25.Reith M.E.A., Sershen H., Allen D.L., Lajtha A. A portion of [3H] cocaine binding in brain is associated with serotonergic neurons. Mol. Pharmacol. 1983;23:600–606. [PubMed] [Google Scholar]
  • 26.Ritz M.C., Lamb R.J., Goldberg S.R., Kuhar M.J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science. 1987;237:1219–1223. doi: 10.1126/science.2820058. [DOI] [PubMed] [Google Scholar]
  • 27.Roberts D.C.S., Koob G.F., Klonoff P., Fibiger H.C. Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 1980;12:781–787. doi: 10.1016/0091-3057(80)90166-5. [DOI] [PubMed] [Google Scholar]
  • 28.Ross S.B., Renyi A.L. Inhibition of the uptake of triated 5-hydroxytryptamine in brain tissue. Eur. J. Pharmacol. 1969;7:270–277. doi: 10.1016/0014-2999(69)90091-0. [DOI] [PubMed] [Google Scholar]
  • 29.Scheel-Kruger, Baestrup C., Nielson M., Golembiowska K., Mogilnicka E. Cocaine: discussion on the role of dopamine in the biochemical mechanism of cocaine action. In: Ellinwood E.H., Kilbey M.M., editors. second edition. vol. 21. Plenum Press; New York: 1977. pp. 373–407. (Cocaine and other stimulants. Advances in behavioral biology). [Google Scholar]
  • 30.Sherer M.A., Kumor K.M., Jaffe J.H. Effects of intravenous cocaine are partially attenuated by haloperidol. Psychiatry Res. 1989;27:117–125. doi: 10.1016/0165-1781(89)90127-3. [DOI] [PubMed] [Google Scholar]
  • 31.Wilson M.C., Schuster C.R. The effects of chlorprozamine on psychomotor stimulant self administration in the rhesus monkey. Psychopharmacology (Berlin) 1972;26:115–126. doi: 10.1007/BF00422098. [DOI] [PubMed] [Google Scholar]
  • 32.Wise R.A., Bozarth M.A. A psychostimulant theory of addiction. Psychol. Rev. 1987;94:469–492. [PubMed] [Google Scholar]

Articles from Pharmacology, Biochemistry, and Behavior are provided here courtesy of Elsevier

RESOURCES