Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 18;42(4):889–898. doi: 10.1016/0091-3057(92)90045-H

Cocaine's colocalized effects on synaptic serotonin and dopamine in ventral tegmentum in a reinforcement paradigm

Patricia A Broderick 1,1
PMCID: PMC7133216  PMID: 1513872

Abstract

The effect of subcutaneous (SC) cocaine (20 mg/kg) on synaptic concentrations of the biogenic amines, dopamine (DA), and serotonin (5-HT) in Ventral Tegmental Area, (VTA-[A10]) was studied in freely moving and behaving rats (rattus norvegicus) with in vivo voltammetry (in vivo electrochemistry). The actual detection of the biogenic amines was on-line and within a temporal resolution of seconds. Simultaneously, the psychostimulant behavior induced by cocaine was studied by infrared photocell beam detection. The results show that cocaine concurrently and significantly increased synaptic concentrations of DA (p < 0.0001) and 5-HT (p < 0.004) in VTA. Serotonin changes were accompanied by a notable oscillatory pattern. Importantly, DA and 5-HT changes in VTA were significantly and positively correlated (p < 0.01). Moreover, psychostimulant behaviors induced by cocaine were significantly increased over control values (p < 0.0001). Psychostimulant behaviors were significantly correlated with concurrently changing synaptic concentrations of DA (p < 0.01) and also with 5-HT to a lesser degree. Additionally, behavioral data indicate that cocaine may exhibit an anxiolytic effect during acute administration because agoraphobic behavior, as shown by increased central ambulatory behavior, was dramatically reduced by cocaine. Summarily, the present findings show that cocaine increased synaptic concentrations of DA in VTA, an action that is correlated with cocaine-induced psychostimulant behavior. The DA-ergic effect appears to be tonically maintained. Furthermore, new findings demonstrate a colocalized, cocaine induced 5-HT-ergic effect in VTA, which keeps pace with cocaine-induced alterations in DA-ergic neurotransmission. Thus, 5-HT may be a relay or a gating mechanism for a DA reward signalling pathway for cocaine.

Keywords: Cocaine, Dopamine, Serotonin, Ventral tegmentum, In vivo voltammetry (electrochemistry), Psychostimulant behavior, Reinforcement

References

  • 1.Andrews C.D., Fernando J.C.R., Curzon G. Differential involvement of dopamine-containing tracts in 5-hydroxytryptamine-dependent behaviours caused by amphetamine in large doses. Neuropharmacology. 1982;21:63–68. doi: 10.1016/0028-3908(82)90212-x. [DOI] [PubMed] [Google Scholar]
  • 2.Arkin H., Colton R.R. Harper and Row Publishers; New York: 1963. Tables for Statisticians; pp. 16–17. [Google Scholar]
  • 3.Beart P.M., McDonald D. 5-Hydroxytryptamine and 5-hydroxytryptaminergic-dopaminergic interactions in the ventral tegmental area of rat brain. J. Pharm. Pharmacol. 1982;34:591–593. doi: 10.1111/j.2042-7158.1982.tb04801.x. [DOI] [PubMed] [Google Scholar]
  • 4.Bedford J.A., Bailey L.P., Wilson M.C. Cocaine reinforced progressive ratio performance in the rhesus monkey. Pharmacol. Biochem. Behav. 1978;9:631–638. doi: 10.1016/0091-3057(78)90214-9. [DOI] [PubMed] [Google Scholar]
  • 5.Blaha C.D., Jung M.E. Electrochemical evaluation of stearate-modified graphite paste electrodes: Selective detection of dopamine is maintained after exposure to brain tissue. J. Electroanal. Chem. 1991;310:317–334. [Google Scholar]
  • 6.Bobillier P., Seguin S., Degueurce A., Lewis B.D., Pujol J.F. The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography. Brain Res. 1979;166:1–8. doi: 10.1016/0006-8993(79)90644-9. [DOI] [PubMed] [Google Scholar]
  • 7.Bradberry C.W., Roth R.H. Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental area as shown by in vivo microdialysis. Neurosci. Lett. 1989;103:97–102. doi: 10.1016/0304-3940(89)90492-8. [DOI] [PubMed] [Google Scholar]
  • 8.Broderick P.A. Characterizing stearate probes in vitro for the electrochemical detection of dopamine and serotonin. Brain Res. 1989;495:115–121. doi: 10.1016/0006-8993(89)91224-9. [DOI] [PubMed] [Google Scholar]
  • 9.Broderick P.A. State-of-the-Art microelectrodes for in vivo voltammetry. Electroanalysis. 1990;2:241–251. [Google Scholar]
  • 10.Broderick P.A. Cocaine-on-line analysis of an accumbens amine neuronal basis for psychomotor behavior. Pharmacol. Biochem. Behav. 1991;40:959–968. doi: 10.1016/0091-3057(91)90112-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Broderick P.A. In vivo voltammetric studies on release mechanisms for cacaine with γ-butyrolactone. Pharmacol. Biochem. Behav. 1991;40:969–975. doi: 10.1016/0091-3057(91)90113-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Carboni E., Imperato A., Perezzani L., DiChiara G. Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience. 1989;28:653–661. doi: 10.1016/0306-4522(89)90012-2. [DOI] [PubMed] [Google Scholar]
  • 13.Chen J., van Praag H.M., Gardner E.L. Activation of 5-HT3 receptor by 1-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res. 1991;543:354–357. doi: 10.1016/0006-8993(91)90050-6. [DOI] [PubMed] [Google Scholar]
  • 14.Cunningham K.A., Lakoski J.M. Electrophysiological effects of cocaine and procaine on dorsal raphe serotonin neurons. Eur. J. Pharmacol. 1988;148:457–462. doi: 10.1016/0014-2999(88)90128-8. [DOI] [PubMed] [Google Scholar]
  • 15.Drescher K., Hetey L. Influence of antipsychotics and serotonin antagonists on presynaptic receptors modulating the release of serotonin in synaptosomes of the nucleus accumbens of rats. Neuropharmacology. 1988;27:31–36. doi: 10.1016/0028-3908(88)90197-9. [DOI] [PubMed] [Google Scholar]
  • 16.Einhorn L.C., Johansen P.A., White F.J. Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: Studies in the ventral tegmental area. J. Neurosci. 1988;8:100–112. doi: 10.1523/JNEUROSCI.08-01-00100.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Emmett-Oglesby M.W., Wurst M., Lal H. Discriminative stimulus properties of a small dose of cocaine. Neuropharmacology. 1983;22:97–101. doi: 10.1016/0028-3908(83)90266-6. [DOI] [PubMed] [Google Scholar]
  • 18.Galloway M.P. Regulation of dopamine and serotonin synthesis by acute administration of cocaine. Synapse. 1990;6:63–72. doi: 10.1002/syn.890060108. [DOI] [PubMed] [Google Scholar]
  • 19.Geyer M.A. Approaches to the characterization of drug effects on locomotor activity in rodents. In: Adler M.W., Cowan A., editors. Testing and evaluation of drugs of abuse. Alan R. Liss; New York: 1990. pp. 81–99. [Google Scholar]
  • 20.Herve D., Pickel V.M., Joh T.H., Beaudet A. Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res. 1987;435:71–83. doi: 10.1016/0006-8993(87)91588-5. [DOI] [PubMed] [Google Scholar]
  • 21.Herve D., Simon H., Blanc G., LeMoal M., Glowinski J., Tassin J.P. Opposite changes in dopamine utilization in the nucleus accumbens and the frontal cortex after electrolytic lesion of the median raphe in the rat. Brain Res. 1981;216:422–428. doi: 10.1016/0006-8993(81)90144-x. [DOI] [PubMed] [Google Scholar]
  • 22.Hurd Y.L., Ungerstedt U. Cocaine: An in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse. 1989;3:48–54. doi: 10.1002/syn.890030107. [DOI] [PubMed] [Google Scholar]
  • 23.Hurd Y.L., Weiss F., Koob G.F., Anden N.E., Ungerstedt U. Cocaine reinforcement and extracellular dopamine overflow in rat nucleus accumbens: An in vivo microdialysis study. Brain Res. 1989;498:199–203. doi: 10.1016/0006-8993(89)90422-8. [DOI] [PubMed] [Google Scholar]
  • 24.Johanson C.E., Schuster C.R. A choice procedure for drug reinforcers: Cocaine and methylphenidate in the rhesus monkey. J. Pharmacol. Exp. Therap. 1975;193:676–688. [PubMed] [Google Scholar]
  • 25.Kalivas P.W., Duffy P. Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse. 1990;5:48–58. doi: 10.1002/syn.890050104. [DOI] [PubMed] [Google Scholar]
  • 26.Kornetsky C., Esposito R.U. Reward and detection thresholds for brain stimulation: Dissociative effects of cocaine. Brain Res. 1981;209:496–500. doi: 10.1016/0006-8993(81)90177-3. [DOI] [PubMed] [Google Scholar]
  • 27.Loh E.A., Roberts D.C. Break-points on a progressive ratio schedule reinforced by intravenous cocaine increase following depletion of forebrain serotonin. Psychopharmacology (Berlin) 1990;101:262–266. doi: 10.1007/BF02244137. [DOI] [PubMed] [Google Scholar]
  • 28.Marsden C.A. Involvement of 5-hydroxytryptamine and dopamine neurons in the behavioral effects of α-methyltryptamine. Neuropharmacology. 1980;19:691–698. doi: 10.1016/0028-3908(80)90059-3. [DOI] [PubMed] [Google Scholar]
  • 29.Moghaddam B., Bunney B.S. Differential effect of cocaine on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens: Comparison to amphetamine. Synapse. 1989;4:156–161. doi: 10.1002/syn.890040209. [DOI] [PubMed] [Google Scholar]
  • 30.Nayak P.K., Misra A.L., Mule S.J. Physiological disposition and biotransformation of [3H] cocaine in activity and chronically treated rats. J. Pharmacol. Exp. Ther. 1976;196:556–569. [PubMed] [Google Scholar]
  • 31.Pan Z.Z., Williams J.T. Differential actions of cocaine and amphetamine on dorsal raphe neurons in vitro. J. Pharmacol. Exp. Therap. 1989;251:56–62. [PubMed] [Google Scholar]
  • 32.Parent A., Descarries L., Beaudet A. Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of [3H] 5-hydroxytryptamine. Neuroscience. 1981;6:115–138. doi: 10.1016/0306-4522(81)90050-6. [DOI] [PubMed] [Google Scholar]
  • 33.Pelligrino L.J., Cushman A.J. Appleton-Century-Crofts; New York: 1967. A stereotaxic atlas of the rat brain; p. 46. [Google Scholar]
  • 34.Peris J., Boyson S.J., Cass W.A., Curella P., Dwoskin L.P., Larson G., Lin L.H., Yasuda R.P., Zahniser N.R. Persistence of neurochemical changes in dopamine systems after repeated cocaine administration. J. Pharmacol. Exp. Therap. 1990;253:38–44. [PubMed] [Google Scholar]
  • 35.Pettit H.O., Justice J.B., Jr. Effect of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res. 1991;539:94–102. doi: 10.1016/0006-8993(91)90690-w. [DOI] [PubMed] [Google Scholar]
  • 36.Phillips A.G., Fibiger H.C. Neuroanatomical basis of intracranial self stimulation: Untangling the Gordian knot. In: Liebman J.M., Cooper S.J., editors. The neuropharmacological basis of reward. Oxford University Press; New York: 1989. pp. 66–105. [Google Scholar]
  • 37.Pickens R., Thompson T. Cocaine reinforced behavior in rats: Effects of reinforcement magnitude and fixed ratio size. J. Pharmacol. Exp. Therap. 1968;161:122–129. [PubMed] [Google Scholar]
  • 38.Porrino L.J., Esposito R.U., Seeger T.F., Crane A.M., Pert A., Sokoloff L. Metabolic mapping of the brain during rewarding self-stimulation. Science. 1984;224:306–309. doi: 10.1126/science.6710145. [DOI] [PubMed] [Google Scholar]
  • 39.Roberts D.C.S., Koob G.F. Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav. 1982;17:901–904. doi: 10.1016/0091-3057(82)90469-5. [DOI] [PubMed] [Google Scholar]
  • 40.Ross S.B., Renyi A.L. Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur. J. Pharmacol. 1969;7:270–277. doi: 10.1016/0014-2999(69)90091-0. [DOI] [PubMed] [Google Scholar]
  • 41.Saavedra J.M. Vol. 36. 1977. Distribution of serotonin and synthesizing enzymes in discrete areas of the brain; pp. 2134–2141. (Fed. Proc.). [PubMed] [Google Scholar]
  • 42.Steinbusch H.W.M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience. 1981;6:557–618. doi: 10.1016/0306-4522(81)90146-9. [DOI] [PubMed] [Google Scholar]
  • 43.Stellar J.R., Rice M.B. Pharmacological basis of intracranial self-stimulation reward. In: Liebman J.M., Cooper S.J., editors. The neuropharmacological basis of reward. Oxford University Press; New York: 1989. pp. 14–65. [Google Scholar]
  • 44.Sulzer D., Rayport S. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: A mechanism of action. Neuron. 1990;5:797–808. doi: 10.1016/0896-6273(90)90339-h. [DOI] [PubMed] [Google Scholar]
  • 45.Swanson L.W. The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 1982;9:321–353. doi: 10.1016/0361-9230(82)90145-9. [DOI] [PubMed] [Google Scholar]
  • 46.Uchimura N., North R.A. Actions of cocaine on rat nucleus accumbens neurons in vitro. Br. J. Pharmacology. 1990;99:736–740. doi: 10.1111/j.1476-5381.1990.tb12999.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Wise C.D., Berger B.D., Stein L. Evidence of α-noradrenergic reward receptors and serotonergic punishment receptors in the rat brain. Psychiatry. 1973;6:3–21. [PubMed] [Google Scholar]
  • 48.Wise R.A., Bozarth M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 1987;94:469–492. [PubMed] [Google Scholar]

Articles from Pharmacology, Biochemistry, and Behavior are provided here courtesy of Elsevier

RESOURCES