Abstract
Cocaine (10 mg/kg), administered intraperitoneal (IP), was studied for its effects on dopamine (DA) and serotonin (5-HT) release in ventrolateral nucleus accumbens (vlNAcc) of conscious and behaving male, virus-free, Sprague-Dawley rats with in vivo electrochemistry (voltammetry). Miniature stearate probes detected DA and 5-HT release, on line and within a temporal resolution of seconds. Psychostimulant behaviors, in the form of four behavioral components (i.e., the classically DA-dependent behaviors of locomotor activity [ambulations], rearing, and stereotypy, and a 5-HT-ergic behavior, central ambulations) were studied concurrently with infrared photobeam detection. The results show that (IP) cocaine significantly increased vlNAcc DA release (p < 0.0001) and 5-HT release (p < 0.0012). Each of the four parameters of cocaine-induced psychostimulant behavior was concurrently and significantly increased as well (ambulations: p < 0.0001; rearing: p < 0.0008; stereotypy: p < 0.0004; central ambulations: p < 0.0082). Moreover, exactly coincident data points for DA and 5-HT release occurred 10 and 40 min after (IP) cocaine administration. Cocaine-induced DA and 5-HT release were highly and positively correlated during the first hour of study (p < 0.01). As expected, increased DA release in vlNAcc after cocaine administration was significantly and positively correlated with classically DA-dependent behaviors (first- and second-hour effects) (p < 0.01) and with the 5-HT-ergic behavior, central ambulations (p < 0.01). Also, cocaine-induced 5-HT release was significantly and positively correlated with 5-HT behavior (p < 0.01). However, not as expected, classically DA-dependent behaviors were more positively correlated with cocaine-induced 5-HT release in vlNAcc throughout the two-hour period of study. Thus, the present findings show that 5-HT is a comediator with DA in the cocaine response in vlNAcc. Importantly, 5-HT may signal the known DA response to cocaine.
Keywords: Cocaine, Psychostimulant behavior, Dopamine, Serotonin, Ventrolateral nucleus accumbens (vlNAcc), In vivo electrochemistry (voltammetry), Anxiety, Agoraphobia
References
- 1.Beart P.M., McDonald D. 5-Hydroxytryptamine and 5-hydroxytryptaminergic-dopaminergic interactions in the ventral tegmental area of rat brain. J. Pharm. Pharmacol. 1982;34:591–593. doi: 10.1111/j.2042-7158.1982.tb04801.x. [DOI] [PubMed] [Google Scholar]
- 2.Blaha C.D., Jung M.E. Electrochemical evaluation of stearate modified graphite paste electrodes: Selective detection of dopamine maintained after exposure to brain tissue. J. Electroanal. Chem. 1991;310:317–334. [Google Scholar]
- 3.Bradberry C.W., Roth R.H. Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental areas as shown by in vivo microdialysis. Neurosci. Lett. 1989;103:97–102. doi: 10.1016/0304-3940(89)90492-8. [DOI] [PubMed] [Google Scholar]
- 4.Broderick P.A. Characterizing stearate probes in vitro for the electrochemical detection of dopamine and serotonin. Brain Res. 1989;495:115–121. doi: 10.1016/0006-8993(89)91224-9. [DOI] [PubMed] [Google Scholar]
- 5.Broderick P.A. State-of-the-Art microelectrodes for in vivo voltammetry. Electroanalysis. 1990;2:241–251. [Google Scholar]
- 6.Broderick P.A. Cocaine-on-line analysis of an accumbens amine neuronal basis for psychomotor behavior. Pharmacol. Biochem. Behav. 1991;40:959–968. doi: 10.1016/0091-3057(91)90112-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Broderick P.A. In vivo voltammetric studies on release mechanisms for cocaine with γ-butyrolactone. Pharmacol. Biochem. Behav. 1991;40:969–975. doi: 10.1016/0091-3057(91)90113-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Broderick P.A. Cocaine's colocalized effects on synaptic serotonin and dopamine in ventral tegmentum in a reinforcement paradigm. Pharmacol. Biochem. Behav. 1992;42:889–898. doi: 10.1016/0091-3057(92)90045-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Broderick P.A. Distinguishing effects of cocaine IV and SC on mesoaccumbens dopamine and serotonin release with chloral hydrate anesthesia. Pharmacol. Biochem. Behav. 1992;43:929–937. doi: 10.1016/0091-3057(92)90427-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Broderick P.A., Wechsler R.T., Phelan F.T., Eng F. Cocaine increases accumbens serotonin release concurrently with dopamine release in psychostimulant reinforcement. Soc. Neurosci. Abstr. 1992;18:1456. [Google Scholar]
- 11.Brodie M.S., Dunwiddie T.V. Cocaine effects in the ventral tegmental area: Evidence for an indirect dopaminergic mechanism of action. Naunyn Schmiedebergs Arch. Pharmacol. 1990;342:660–665. doi: 10.1007/BF00175709. [DOI] [PubMed] [Google Scholar]
- 12.Carboni E., Imperato A., Perezzani L., DiChiara G. Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience. 1989;28:653–661. doi: 10.1016/0306-4522(89)90012-2. [DOI] [PubMed] [Google Scholar]
- 13.Carrol M.E., Lac S.T., Asencio M., Kragh R. Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol. Biochem. Behav. 1990;35:237–244. doi: 10.1016/0091-3057(90)90232-7. [DOI] [PubMed] [Google Scholar]
- 14.Chen J., van Praag H.M., Gardner E.L. Activation of 5-HT3 receptor by l-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res. 1991;543:354–357. doi: 10.1016/0006-8993(91)90050-6. [DOI] [PubMed] [Google Scholar]
- 15.Cunningham K.A., Callahan P.M. Monoamine reuptake inhibitors enhance the discriminative state induced by cocaine in the rat. Psychopharmacology. 1991;104:177–180. doi: 10.1007/BF02244175. [DOI] [PubMed] [Google Scholar]
- 16.Cunningham K.A., Lakoski J.M. Electrophysiological effects of cocaine and procaine on dorsal raphe serotonin neurons. Eur. J. Pharmacol. 1988;148:457–462. doi: 10.1016/0014-2999(88)90128-8. [DOI] [PubMed] [Google Scholar]
- 17.Cunningham K.A., Lakoski J.M. The interaction of cocaine with serotonin dorsal raphe neurons. Neuropsychopharmacology. 1990;3:41–50. [PubMed] [Google Scholar]
- 18.Darmani N.A., Martin B.R., Pandey U., Glennon R.A. Inhibition of 5-HT2 receptor-mediated head twitch response by cocaine via indirect stimulation of adrenergic alpha2 and serotonergic 5-HT1A receptors. Pharmacol. Biochem. Behav. 1991;38:353–357. doi: 10.1016/0091-3057(91)90290-i. [DOI] [PubMed] [Google Scholar]
- 19.Domesick V.B. Neuroanatomical organization of dopamine neurons in the ventral tegmental area. Ann. N.Y. Acad. Sci. 1988;537:10–26. doi: 10.1111/j.1749-6632.1988.tb42094.x. [DOI] [PubMed] [Google Scholar]
- 20.Drescher K., Hetey L. Influence of antipsychotics and serotonin antagonists on presynaptic receptors modulating the release of serotonin in synaptosomes of the nucleus accumbens of rats. Neuropharmacology. 1988;27:31–36. doi: 10.1016/0028-3908(88)90197-9. [DOI] [PubMed] [Google Scholar]
- 21.Einhorn L.C., Johansen P.A., White F.J. Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: Studies in the ventral tegmental area. J. Neurosci. 1988;8:100–112. doi: 10.1523/JNEUROSCI.08-01-00100.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Friedman E., Gershen S., Rotrosen J. Effect of acute cocaine treatment on the turnover of 5-hydroxytryptamine in the rat brain. Br. J. Pharmacol. 1975;54:61–64. doi: 10.1111/j.1476-5381.1975.tb07410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Gallistel C.R. The role of dopaminergic projections in MFB self-stimulation. Behav. Br. Res. 1986;20:313–321. doi: 10.1016/0166-4328(86)90231-7. [DOI] [PubMed] [Google Scholar]
- 24.Galloway M.P. Regulation of dopamine and serotonin synthesis by acute administration of cocaine. Synapse. 1990;6:63–72. doi: 10.1002/syn.890060108. [DOI] [PubMed] [Google Scholar]
- 25.Gelbert M.B., Curran D.J. Alternating current voltammetry of dopamine and ascorbic acid at carbon paste and stearic acid modified carbon paste electrodes. Anal. Chem. 1986;58:1028–1032. doi: 10.1021/ac00297a602. [DOI] [PubMed] [Google Scholar]
- 26.Geyer M.A. Approaches to the characterization of drug effects on locomotor activity in rodents. In: Adler M.W., Cowan A., editors. Testing and evaluation of drugs of abuse. A.R. Liss; New York: 1990. pp. 81–99. [Google Scholar]
- 27.Glowinski J., Tassin J.P. Increased utilization of dopamine in the nucleus accumbens but not in the cerebral cortex after dorsal raphe lesion in the rat. Neurosci. Lett. 1979;15:127–133. doi: 10.1016/0304-3940(79)96101-9. [DOI] [PubMed] [Google Scholar]
- 28.Guan X.M., McBride W.J. Serotonin microinfusion into the ventral tegmental area increases accumbens dopamine metabolites. Brain Res. Bull. 1989;23:541–547. doi: 10.1016/0361-9230(89)90198-6. [DOI] [PubMed] [Google Scholar]
- 29.Hernandez L., Guzman N.A., Hoebel B.G. Bidirectional microdialysis in vivo shows differential dopaminergic potency of cocaine, procaine and lidocaine in the nucleus accumbens using capillary electrophoresis for calibration of drug outward diffusion. Psychopharmacology. 1991;105:264–268. doi: 10.1007/BF02244320. [DOI] [PubMed] [Google Scholar]
- 30.Herve D., Simon H., Blanc G., LeMoal M., Glowinski J., Tassin J.P. Opposite changes in dopamine utilization in the nucleus accumbens and the frontal cortex after electrolytic lesion of the median raphe in the rat brain. Brain Res. 1981;216:422–428. doi: 10.1016/0006-8993(81)90144-x. [DOI] [PubMed] [Google Scholar]
- 31.Izenwasser S., Rosenberger J.G., Cox B.M. Inhibition of [3H] dopamine and [3H] serotonin uptake by cocaine: Comparison between chopped tissue slices and synaptosomes. Life Sci. 1992;50:541–547. doi: 10.1016/0024-3205(92)90365-v. [DOI] [PubMed] [Google Scholar]
- 32.Jiang L.H., Ashby C.R., Kasser R.J., Wang R.Y. The effect of intraventricular administration of the 5-HT3 receptor agonist 2 methyl-serotonin on the release of dopamine in the nucleus accumbens : An in vivo coulometric study. Brain Res. 1990;513:156–160. doi: 10.1016/0006-8993(90)91103-n. [DOI] [PubMed] [Google Scholar]
- 33.Johanson C.E., Fischman M.W. The pharmacology of cocaine related to its abuse. Pharmacol. Rev. 1989;41:3–52. [PubMed] [Google Scholar]
- 34.Kalivas P.W., Duffy P. Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse. 1990;5:48–58. doi: 10.1002/syn.890050104. [DOI] [PubMed] [Google Scholar]
- 35.Koob G.F., Markou A., Heinrichs S., Schulteis G., Weiss F. Motivational effects of drug withdrawal: Neuronal substrates. Int. Behav. Neuro. Soc. Abstr. 1993;2:20. [Google Scholar]
- 36.Koob G.F., Stinus L., LeMoal M., Bloom F.E. Opponent process theory of motivation: Neurobiological evidence from studies of opiate dependence. Neurosci. Biochem. Rev. 1989;13:135–140. doi: 10.1016/s0149-7634(89)80022-3. [DOI] [PubMed] [Google Scholar]
- 37.Lau C.E., Imam A., Ma F., Falk J.L. Acute effects of cocaine on spontaneous and discriminative motor functions: Relation to route of administration and pharmacokinetics. J. Pharmacol. Exp. Ther. 1991;257:444–456. [PubMed] [Google Scholar]
- 38.Levy A.D., Li Q., Kerr J.E., Rittenhouse P.A., Milonas G., Cabrera T.M., Battaglia G., Alvarez Sanz M.C., van deKar L.D. Cocaine-induced elevation of plasma adrenocorticotropin hormone and corticosterone is mediated by serotonergic neurons. J. Pharmacol. Exp. Ther. 1991;259:495–500. [PubMed] [Google Scholar]
- 39.Loh E.A., Roberts D.C. Break-points on a progressive ratio schedule reinforced by intravenous cocaine increase following depletion of forebrain serotonin. Psychopharmacology (Berl.) 1990;101:262–266. doi: 10.1007/BF02244137. [DOI] [PubMed] [Google Scholar]
- 40.Meert T.F., Awouters F., Niemegeers C.J.E., Schellekens K.H.L., Janssen P.A.J. Ritanserin reduces abuse of alcohol, cocaine and fentanyl in rats. Pharmacopsychiatry. 1991;24:159–163. doi: 10.1055/s-2007-1014461. [DOI] [PubMed] [Google Scholar]
- 41.Ng J.P., Hubert G.W., Justice J.B., Jr. Increased stimulated release and uptake of dopamine in nucleus accumbens after repeated cocaine administration as measured by in vivo voltammetry. J. Neurochem. 1991;56:1485–1492. doi: 10.1111/j.1471-4159.1991.tb02042.x. [DOI] [PubMed] [Google Scholar]
- 42.Pan Z.Z., Williams J.T. Differential actions of cocaine and amphetamine on dorsal raphe neurons in vitro. J. Pharmacol. Exp. Ther. 1989;251:56–62. [PubMed] [Google Scholar]
- 43.Parsons L.H., Justice J.B.J. Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Res. 1993;606:195–199. doi: 10.1016/0006-8993(93)90984-u. [DOI] [PubMed] [Google Scholar]
- 44.Pellegrino L.J., Pellegrino A.S., Cushman A.J. Plenum Press; New York: 1979. A stereotaxic atlas of the rat brain. [Google Scholar]
- 45.Phelix C.F., Tshoepe L., Broderick P.A. Convergence of serotonin and dopamine in ventrolateral nucleus accumbens: Anatomical and in vivo electrochemical analysis. Soc. Neurosci. Abstr. 1993;19 [Google Scholar]
- 46.Piercey M.F., Lum J.T., Hoffmann W.E., Carlsson A., Ljung E., Svensson K. Antagonism of cocaine's pharmacological effects by the stimulant dopaminergic antagonists, (+)-AJ76 and (+)-UH232. Brain Res. 1992;588:217–222. doi: 10.1016/0006-8993(92)91578-3. [DOI] [PubMed] [Google Scholar]
- 47.Reith M.E.A. 5-HT3 receptor antagonists attenuate cocaine-induced locomotion in mice. Eur. J. Pharmacol. 1990;186:327–330. doi: 10.1016/0014-2999(90)90454-e. [DOI] [PubMed] [Google Scholar]
- 48.Reith M.E.A., Weiner H.L., Fischette C.T. Sertraline and cocaine-induced locomotion in mice. I. Acute studies. Psychopharmacology. 1991;103:297–305. doi: 10.1007/BF02244282. [DOI] [PubMed] [Google Scholar]
- 49.Richardson N.R., Roberts D.C.S. Fluoxetine pretreatment reduces breaking points on a progressive ratio schedule reinforced by intravenous cocaine self-administration in the rat. Life Sci. 1991;49:833–840. doi: 10.1016/0024-3205(91)90248-a. [DOI] [PubMed] [Google Scholar]
- 50.Ritz M.C., Kuhar M.J. Relationship between self-administration of amphetamines and monoamine receptors in brain: Comparison with cocaine. J. Pharmacol. Exp. Ther. 1989;248:1010–1017. [PubMed] [Google Scholar]
- 51.Robbins T.W., Mittleman G., O'Brien J., Winn P. The neuropsychological significance of stereotypy induced by stimulant drugs. In: Cooper S.J., Dourish C.T., editors. Neurobiology of stereotyped behavior. Oxford Science Publishers; New York: 1990. pp. 25–63. [Google Scholar]
- 52.Roberts D.C.S., Koob G.F. Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav. 1982;17:901–904. doi: 10.1016/0091-3057(82)90469-5. [DOI] [PubMed] [Google Scholar]
- 53.Roberts D.C.S., Koob G.F., Klonoff P., Fibiger H.C. Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 1980;12:781–787. doi: 10.1016/0091-3057(80)90166-5. [DOI] [PubMed] [Google Scholar]
- 54.Ross S.B., Renyi A.L. Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur. J. Pharmacol. 1969;7:270–277. doi: 10.1016/0014-2999(69)90091-0. [DOI] [PubMed] [Google Scholar]
- 55.Rudnick G., Wall S.C. Binding of the cocaine analog 2-beta-(3H) carboxymethoxy-3-Beta-(4-Fluorophenyl)tropane to the serotonin transporter. Mol. Pharmacol. 1991;40:421–426. [PubMed] [Google Scholar]
- 56.Shizgal P., Bielajew C., Corbett D., Skelton R., Yeomans J. Behavioral methods for inferring anatomical linkage between rewarding brain stimulation sites. J. Comp. Physiol. Psychol. 1980;94:227–237. doi: 10.1037/h0077668. [DOI] [PubMed] [Google Scholar]
- 57.Solomon R.L., Corbit J.D. An opponent process theory of motivation. I. Temporal dynamics of affect. Psychol. Rev. 1974;81:119–145. doi: 10.1037/h0036128. [DOI] [PubMed] [Google Scholar]
- 58.Stellar J.R., Rice M.B. Pharmacological basis of intracranial self-stimulation reward. In: Liebman J.M., Cooper S.J., editors. The neuropharmacological basis of reward. Oxford University Press; New York: 1989. pp. 14–65. [Google Scholar]
- 59.Swanson L.W. The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 1982;9:321–353. doi: 10.1016/0361-9230(82)90145-9. [DOI] [PubMed] [Google Scholar]
- 60.Swanson L.W., Cowan W.M. A note on the connections and development of the nucleus accumbens. Brain Res. 1975;92:324–330. doi: 10.1016/0006-8993(75)90278-4. [DOI] [PubMed] [Google Scholar]
- 61.Teitelbaum P., Pellis S.M., DeVietti T.L. Disintegration into stereotypy induced by drugs or brain damage: A microdescriptive behavioral analysis. In: Cooper S.J., Dourish C.T., editors. Neurobiology of stereotyped behavior. Oxford University Press; New York: 1990. pp. 169–199. [Google Scholar]
- 62.Uchimura N., North R.A. Actions of cocaine on rat nucleus accumbens neurons in vitro. Br. J. Pharmacol. 1990;99:736–740. doi: 10.1111/j.1476-5381.1990.tb12999.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.White F.J., Wachtel S.R., Johansen P.A., Einhorn L.C. Electrophysiological studies of the rat mesoaccumbens dopamine system: Focus on dopamine receptor subtypes, interactions and the effects of cocaine. In: Chiodo L.A., Freeman A.S., editors. Neurophysiology of dopaminergic systems. Lakeshore Publishing Co.,; Grosse Pointe, MI: 1987. pp. 317–365. 1987. [Google Scholar]
- 64.Wise R.A., Bozarth M.A. Brain reward circuitry, four circuit elements “wired” in apparent series. Brain Res. Bull. 1984;12:203–208. doi: 10.1016/0361-9230(84)90190-4. [DOI] [PubMed] [Google Scholar]
- 65.Yim Y., Mogenson G.J. Response of nucleus accumbens neurons to amygdala stimulation and its modification by dopamine. Brain Res. 1982;239:401–415. doi: 10.1016/0006-8993(82)90518-2. [DOI] [PubMed] [Google Scholar]