Abstract
The genomic RNA of the coronavirus IBV contains an efficient ribosomal frameshifting signal at the junction of two overlapping open reading frames. We have defined by deletion analysis an 86 nucleotide sequence encompassing the overlap region which is sufficient to allow frameshifting in a heterologous context. The upstream boundary of the signal consists of the sequence UUUAAAC, which is the likely site of ribosomal slippage. We show by creation of complementary nucleotide changes that the RNA downstream of this “slippery” sequence folds into a tertiary structure termed a pseudoknot, the formation of which is essential for efficient frameshifting.
References
- Arnott S., Hukins D.W.L., Doveŕ S.D. Optimised parameters for RNA double-helices. Biochem. Biophys. Res. Commun. 1972;48:1392–1399. doi: 10.1016/0006-291x(72)90867-4. [DOI] [PubMed] [Google Scholar]
- Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 1979;7:1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
- Brierley I., Boursnell M.E.G., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clare J.J., Farabaugh P.J. Vol. 82. 1985. Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression; pp. 2829–2833. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clare J.J., Belcourt M., Farabaugh P.J. Vol. 85. 1988. Efficient translational frameshifting occurs within a conserved sequence of the overlap between the two genes of a yeast Ty1 transposon; pp. 6816–6820. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke B.E., Brown A.L., Curry K.M., Newton S.E., Rowlands D.J., Carroll A.R. Potential secondary and tertiary structure in the genomic RNA of foot and mouth disease virus. Nucl. Acids Res. 1987;15:7067–7080. doi: 10.1093/nar/15.17.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colman A. Translation of eukaryotic messenger RNA in Xenopus oocytes. In: Hames B.D., Higgins S.J., editors. Transcription and Translation: A Practical Approach. IRL Press; Oxford: 1984. pp. 271–302. [Google Scholar]
- Craigen W.J., Caskey C.T. Translational frameshifting: where will it stop? Cell. 1987;50:1–2. doi: 10.1016/0092-8674(87)90652-0. [DOI] [PubMed] [Google Scholar]
- Deckman I.C., Draper D.E. S4-α mRNA translation regulation complex. II. Secondary structures of the RNA regulatory site in the presence and absence of S4. J. Mol. Biol. 1987;196:323–332. doi: 10.1016/0022-2836(87)90693-0. [DOI] [PubMed] [Google Scholar]
- Dente L., Cesareni G., Cortese R. pEMBL: a new family of single-stranded plasmids. Nucl. Acids Res. 1983;11:1645–1655. doi: 10.1093/nar/11.6.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dotto G.P., Enea V., Zinder N.D. Functional analysis of bacteriophage f1 intergenic region. Virology. 1981;114:463–473. doi: 10.1016/0042-6822(81)90226-9. [DOI] [PubMed] [Google Scholar]
- Goringer H.U., Wagner R. Does 5S RNA from E. coli have a pseudoknotted structure? Nucl. Acids Res. 1986;14:7473–7485. doi: 10.1093/nar/14.18.7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hames B.D. An introduction to polyacrylamide gel electrophoresis. In: Hames B.D., Rickwood D., editors. Gel Electrophoresis of Proteins — A Practical Approach. IRL Press; Oxford: 1981. pp. 1–91. [Google Scholar]
- Hizi A., Henderson L.E., Copeland T.D., Sowden R.C., Hixson C.V., Oroszlan S. Vol. 84. 1987. Characterization of mouse mammary tumor virus gag-pol gene products and the ribosomal frameshift by protein sequencing; pp. 7041–7046. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgman T.C. A new superfamily of replicative proteins. Nature. 1988;333:22–23. doi: 10.1038/333022b0. [DOI] [PubMed] [Google Scholar]
- Jacks T., Varmus H.E. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
- Jacks T., Townsley K., Varmus H.E., Majors J. Vol. 84. 1987. Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins; pp. 4298–4302. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacks T., Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
- Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson A.B., Good L., Simonetti J., Zuker M. Some simple computational methods to improve the folding of large RNAs. Nucl. Acids Res. 1984;12:54–62. doi: 10.1093/nar/12.1part1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krieg P.A., Melton D.A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucl. Acids Res. 1984;12:7057–7071. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel T.A. Vol. 82. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection; pp. 488–492. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madhani H.D., Jacks T., Varmus H.E. Signals for the expression of the HIV pol gene by ribosomal frameshifting. In: Franza R., Cullen B., Wong-Staal F., editors. The Control of HIV Gene Expression. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1988. pp. 119–125. [Google Scholar]
- Maly P., Brimacombe R. Refined secondary structure models for the 16S and 23S ribosomal RNA of Escherichia coli. Nucl. Acids Res. 1983;11:7263–7286. doi: 10.1093/nar/11.21.7263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marlor R.L., Parkhurst S.M., Corces V.G. The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol. Cell Biol. 1986;6:1129–1134. doi: 10.1128/mcb.6.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellor J., Fulton S.M., Dobson M.J., Wilson W., Kingsman S.M., Kingsman A.J. A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Ty1. Nature. 1985;313:243–246. doi: 10.1038/313243a0. [DOI] [PubMed] [Google Scholar]
- Miller W.A., Waterhouse P.M., Gerlach W.L. Sequence and organization of barley yellow dwarf virus genomic RNA. Nucl. Acids Res. 1988;16:6097–6111. doi: 10.1093/nar/16.13.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore R., Dixon M., Smith R., Peters G., Dickson C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events required for translation of gag and pol. J. Virol. 1987;61:480–490. doi: 10.1128/jvi.61.2.480-490.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pleij C.W.A., Rietveld K., Bosch L. A new principle of RNA folding based on pseudoknotting. Nucl. Acids Res. 1985;13:1717–1731. doi: 10.1093/nar/13.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puglisi J.D., Wyatt J.R., Tinoco I. A pseudoknotted RNA oligonucleotide. Nature. 1988;331:283–286. doi: 10.1038/331283a0. [DOI] [PubMed] [Google Scholar]
- Rice N.R., Stephens R.M., Burny A., Gilden R.V. The gag and pol genes of bovine leukemia virus: nucleotide sequence and analysis. Virology. 1985;142:357–377. doi: 10.1016/0042-6822(85)90344-7. [DOI] [PubMed] [Google Scholar]
- Rietveld K., Pleij C.W.A., Bosch L. Three-dimensional models of the tRNA-like 3′-termini of some plant viral RNAs. EMBO J. 1983;2:1079–1085. doi: 10.1002/j.1460-2075.1983.tb01549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth J.R. Frameshift suppression. Cell. 1981;24:601–602. doi: 10.1016/0092-8674(81)90086-6. [DOI] [PubMed] [Google Scholar]
- Russel M., Kidd S., Kelley M.R. An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene. 1986;45:333–338. doi: 10.1016/0378-1119(86)90032-6. [DOI] [PubMed] [Google Scholar]
- Saigo K., Kugimiya W., Matsuo Y., Inouye S., Yoshioka K., Yuki S. Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature. 1984;312:659–661. doi: 10.1038/312659a0. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schochetman G., Stevens R.H., Simpson R.W. Presence of infectious polyadenylated RNA in the coronavirus avian infectious bronchitis virus. Virology. 1977;77:772–782. doi: 10.1016/0042-6822(77)90498-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddell S., Wege H., ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
- Stanley K.K., Luzio J.P. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 1984;3:1429–1434. doi: 10.1002/j.1460-2075.1984.tb01988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D.F., Kennedy S.I.T. Coronavirus multiplication strategy. I. Identification and characterization of virus-specified RNA. J. Virol. 1980;34:665–674. doi: 10.1128/jvi.34.3.665-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Studnicka G.M., Rahn G.M., Cummings I.W., Salser W.A. Computer method for predicting the secondary structure of single-stranded RNA. Nucl. Acids Res. 1978;5:3365–3387. doi: 10.1093/nar/5.9.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson W., Malim M.H., Mellor J., Kingsman A.J., Kingsman S.M. Expression strategies of the yeast retrotransposon Ty: a short sequence directs ribosomal frameshifting. Nucl. Acids Res. 1986;14:7001–7015. doi: 10.1093/nar/14.17.7001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson W., Braddock M., Adams S.E., Rathjen P.D., Kingsman S.M., Kingsman A.J. HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell. 1988;55:1159–1169. doi: 10.1016/0092-8674(88)90260-7. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mp18 and pUC19 vectors. Gene. 1985;33:103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Young J.F., Desselberger U., Graves P., Palese P., Shatzman A., Rosenberg M. Cloning and expression of influenza virus genes. In: Laver W.G., editor. The Origin of Pandemic Influenza Viruses. Elsevier Science; Amsterdam: 1983. pp. 129–138. [Google Scholar]