Abstract
The O-linked oligosaccharides on mature forms of herpes simplex virus type 1 (HSV1) glycoproteins were characterized, and were found to account largely for the lower electrophoretic mobilities of these forms relative to the mobilities of immature forms. Other posttranslational modifications of HSV1 glycoproteins (designated gB, gC, gD and gE) were related temporally to the discrete shifts in electrophoretic mobilities that signal acquisition of the O-linked oligosaccharides. Fatty acid acylation (principally of gE) could be detected just prior to the shifts, whereas conversion of high-mannosetype N-linked oligosaccharides to the complex type occurred coincident with the shifts. The addition of O-linked oligosaccharides did not occur in cells treated with the ionophore monensin or in a ricinresistant cell line defective in the processing of N-linked oligosaccharides. We conclude that extension of O-linked oligosaccharide chains on HSV1 glycoproteins, and probably also attachment of the first O-linked sugars, occurs as a late posttranslational modification in the Golgi apparatus.
References
- Aminoff D., Baig M.M., Gathmann W.D. Oligosaccharides of A+ hog submaxillary glycoproteins. Vol. 254. 1979. Glycoproteins and blood group activity; pp. 1788–1793. (J. Biol. Chem.). [PubMed] [Google Scholar]
- Baenziger J., Kornfeld S. Structure of the carbohydrate units of IgA1 immunoglobulin. II Sequence of the sialic acid-containing glycopeptides. J. Biol. Chem. 1974;249:1897–1996. [PubMed] [Google Scholar]
- Bahl O.P. Human chorionic gonadotropin. I. Purification and physiochemical properties. J. Biol. Chem. 1969;244:575–583. [PubMed] [Google Scholar]
- Baucke R.B., Spear P.G. Membrane proteins specified by herpes simplex virus. V. Identification of an Fc-binding glycoprotein. J. Virol. 1979;32:779–789. doi: 10.1128/jvi.32.3.779-789.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett G., O'Shaughnessy P. The site of incorporation of sialic acid residues into glycoproteins and subsequent fates of these molecules in various rat and mouse cell types as shown by autoradiography after injection of [3H]-N-acetylmannosamine. I. Observations in hepatocytes. J. Cell Biol. 1981;88:1–15. doi: 10.1083/jcb.88.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhavanandran V.P., Davidson E.A. Characteristics of a mucin-type sialoglycopeptide produced by B16 mouse melanoma cells. Biochem. Biophys. Res. Commun. 1976;70:139–144. doi: 10.1016/0006-291x(76)91119-0. [DOI] [PubMed] [Google Scholar]
- Blobel G., Walter P., Chang C.N., Goldman B.M., Erikson A.H., Lingappa V.R. Vol. 33. 1979. Translocation of proteins across membranes: the signal hypothesis and beyond; pp. 9–36. (Symp. Soc. Exp. Biol.). [PubMed] [Google Scholar]
- Bonner W.M., Laskey R.A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 1974;46:83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Bretz R., Bretz H., Palade G.E. Distribution of terminal glycosyltransferases in hepatic Golgi fractions. J. Cell Biol. 1980;84:87–101. doi: 10.1083/jcb.84.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campadelli-Fiume G., Poletti L., Serafini-Cessi F. Infectivity and glycoprotein processing of herpes simplex virus type 1 grown in a ricin-resistant cell line deficient in N-acetylglucosaminyl transferase 1. J. Virol. 1982;43:1061–1071. doi: 10.1128/jvi.43.3.1061-1071.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson D.M. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J. Biol. Chem. 1968;243:616–626. [PubMed] [Google Scholar]
- Carlson D.M., lyer R.N., Mayo J. Carbohydrate compositions of epithelial mucins. In: Aminoff D., editor. Blood and Tissue Antigens. Academic Press; New York: 1970. pp. 229–247. [Google Scholar]
- Dunphy W.G., Fries E., Urbani L.J., Rothman J.E. Vol. 78. 1981. Early and late functions associated with the Golgi apparatus reside in distinct compartments; pp. 7453–7457. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberle R., Courtney R.J. gA and gB glycoproteins of herpes simplex virus type 1: two forms of a single polypeptide. J. Virol. 1980;36:665–675. doi: 10.1128/jvi.36.3.665-675.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg R.J., Hydrean-Stearn C., Cohen G.H. Structural analysis of precursor and product forms of type-common envelope glycoprotein D (CP-1 antigen) of herpes simplex virus type 1. J. Virol. 1979;31:608–620. doi: 10.1128/jvi.31.3.608-620.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feizi T., Kabat E.A., Vicari G., Anderson B., Marsh W.L. Immunochemical studies on blood groups. J. Immunol. 1971;106:1578–1589. [PubMed] [Google Scholar]
- Gibson R., Kornfeld S., Schlesinger S. The role of oligosaccharides in glycoprotein biosynthesis. Trends Biochem. Sci. 1980;5:290–293. [Google Scholar]
- Gottlieb C., Kornfeld S. Isolation and characterization of two mouse L cell lines resistant to the toxic lectin ricin. J. Biol. Chem. 1976;251:7761–7769. [PubMed] [Google Scholar]
- Hanover J.A., Lennarz W.J., Young J.D. Synthesis of N- and O-linked glycopeptides in oviduct membrane preparations. J. Biol. Chem. 1980;255:6713–6716. [PubMed] [Google Scholar]
- Heine J.W., Honess R.W., Cassai E., Roizman B. Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains. J. Virol. 1974;14:640–651. doi: 10.1128/jvi.14.3.640-651.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hope R.G., Palfreyman J., Suh M., Marsden H.S. Sulphated glycoproteins induced by herpes simplex virus. J. Gen. Virol. 1982;58:399–415. doi: 10.1099/0022-1317-58-2-399. [DOI] [PubMed] [Google Scholar]
- Huang C.C., Aminoff D. Enzymes that destroy blood group specificity. V. The oligosaccharidase of Clostridium perfringens. J. Biol. Chem. 1972;247:6737–6742. [PubMed] [Google Scholar]
- Johnson D.C., Schlesinger M.J. Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology. 1980;103:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
- Johnson D.C., Spear P.G. Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface and egress of virions from infected cells. J. Virol. 1982;43:1102–1112. doi: 10.1128/jvi.43.3.1102-1112.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y.S., Perdoma J., Nordberg J. Glycoprotein biosynthesis in small intestinal mucosa. I. A study of glycosyltransferases in microsomal subfractions. J. Biol. Chem. 1971;246:5466–5476. [PubMed] [Google Scholar]
- Ko G.K.W., Raghupathy E. Glycoprotein biosynthesis in the developing rat brain. II. Microsomal galactosaminyltransferase utilizing endogenous and exogenous protein acceptors. Biochem. Biophys. Acta. 1972;264:129–143. doi: 10.1016/0304-4165(72)90124-9. [DOI] [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Structure of glycoproteins and their oligosaccharide units. In: Lennarz W.J., editor. The Biochemistry of Glycoproteins and Proteoglycans. Plenum Press; New York: 1980. pp. 1–34. [Google Scholar]
- Kornfeld S., Ginsberg V. The metabolism of glucosamine by tissue culture cells. Exp. Cell. Res. 1966;41:592–600. doi: 10.1016/s0014-4827(66)80109-x. [DOI] [PubMed] [Google Scholar]
- Lombart C.G., Winzler R.J. Isolation and characterization of oligosaccharides from canine submaxillary gland mucins. Eur. J. Biochem. 1974;49:77–89. doi: 10.1111/j.1432-1033.1974.tb03812.x. [DOI] [PubMed] [Google Scholar]
- Marshall R.D., Neuberger A. Aspects of the structure and metabolism of glycoproteins. Adv. Carbohydrate Chem. Biochem. 1977;25:407–478. [Google Scholar]
- Moyer S.A., Tsang J.M., Atkinson P.H., Summers D.F. Oligosaccharide moieties of the glycoprotein of vesicular stomatitis virus. J. Virol. 1976;18:167–175. doi: 10.1128/jvi.18.1.167-175.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neufeld E.F., Ashwell G. Carbohydrate recognition systems for receptor-mediated pinotytosis. In: Lennarz W.J., editor. The Biochemistry of Glycoproteins and Proteoglycans. Plenum Press; New York: 1980. pp. 241–266. [Google Scholar]
- Nieman H., Klenk H.D. Coronavirus glycoprotein El, a new type of viral glycoprotein. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oloffson S., Blomberg J., Lycke E. O-glycosidic carbohydrate-peptide linkages of herpes simplex virus glycoproteins. Arch. Virol. 1981;70:321–329. doi: 10.1007/BF01320247. [DOI] [PubMed] [Google Scholar]
- Person S., Kousoulas K.G., Knowles R.W., Read G.S., Holland T.C., Keller P.M., Warner S.C. Glycoprotein processing in mutants of HSV-1 that induce cell fusion. Virology. 1982;117:293–306. doi: 10.1016/0042-6822(82)90470-6. [DOI] [PubMed] [Google Scholar]
- Pizer L.I., Cohen G.H., Eisenberg R.J. Effect of tunicamycin on herpes simplex virus glycoproteins and infectious virus production. J. Virol. 1980;34:142–153. doi: 10.1128/jvi.34.1.142-153.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pomato N., Aminoff D. Vol. 37. 1978. a-D-N-Acetylgalactosaminyl-oligosaccharidase of Clostridium perfringens; p. 1602. (Fed. Proc.). [Google Scholar]
- Roth J., Berger E.G. Co-distribution with thiamine pyrophosphatase in trans-Golgi cisternae. Vol. 92. 1982. Immunocytochemical localization of galactosyltransferase in HeLa cells; pp. 223–229. (J. Cell Biol.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman J.E., Bursztyn-Pettegrew H., Fine R.E. Transport of the membrane glycoprotein of vesicular stomatitis virus to the cell surface in two stages by clathrin-coated vesicles. J. Cell Biol. 1980;86:162–171. doi: 10.1083/jcb.86.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachter H., Roseman S. Mammalian glycosyltransferases. In: Lennarz W.J., editor. Their role in the synthesis and function of complex carbohydrates and glycolipids. Plenum Press; New York: 1980. pp. 85–147. (Biochemistry of Glycoproteins and Proteoglycans). [Google Scholar]
- Schmidt M.F.G., Schlesinger M.J. Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. J. Biol. Chem. 1980;255:3334–3339. [PubMed] [Google Scholar]
- Schmidt M.F.G., Bracha M., Schlesinger M.J. Vol. 76. 1979. Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins; pp. 1687–1691. (Proc. Nat. Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki forest virus, influenza and avian sarcoma virus by tunicamycin. J. Virol. 1976;19:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serafini-Cessi F., Campadelli-Fiume G. Size distribution of glycopeptides and endo-β-N-acetylglucos-aminidase H treatment. Vol. 70. 1981. Studies on benzhydrazone, a specific inhibitor of herpesvirus glycoprotein synthesis; pp. 331–343. (Arch. Virol.). [DOI] [PubMed] [Google Scholar]
- Shida H., Dales S. Biogenesis of vaccinia: carbohydrate of the hemaglutinin molecule. Virology. 1981;111:56–72. doi: 10.1016/0042-6822(81)90653-x. [DOI] [PubMed] [Google Scholar]
- Spear P.G. Membrane proteins specified by herpes simplex viruses. I. Identification of four glycoprotein precursors and their products in type 1-infected cells. J. Virol. 1976;17:991–1008. doi: 10.1128/jvi.17.3.991-1008.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiro R.G. Studies on the monosaccharide sequence of the serum glycoprotein fetuin. J. Biol. Chem. 1962;237:646–652. [PubMed] [Google Scholar]
- Spiro R.G. Characterization of carbohydrate units of glyco-proteins. Meth. Enzymol. 1966;8:26–52. [Google Scholar]
- Spiro R.G., Bhoyroo V.D. Structure of the O-glycosidically linked carbohydrate unit of fetuin. J. Biol. Chem. 1974;249:5704–5717. [PubMed] [Google Scholar]
- Stephens R.E. High resolution preparative SDS-polyacrylamide gel electrophoresis: fluorescent visualization and electrophoretic elution-concentration of protein bands. Anal. Biochem. 1975;65:369–379. doi: 10.1016/0003-2697(75)90521-7. [DOI] [PubMed] [Google Scholar]
- Strous G.J.A.M. Vol. 76. 1979. Initial glycosylation of proteins with acetyl galactosaminylserine linkages; pp. 2694–2698. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struck D.K., Lennarz W.J. The function of saccharidelipids in synthesis of glycoproteins. In: Lennarz W.J., editor. The Biochemistry of Glycoproteins and Proteoglycans. Plenum Press; New York: 1980. pp. 35–83. [Google Scholar]
- Tabas I., Kornfeld S. The synthesis of complex-type oligosaccharides. II. Identification of an α-d-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J. Biol. Chem. 1978;253:7779–7786. [PubMed] [Google Scholar]
- Tabas I., Kornfeld S. Purification and characterization of a rat liver Golgi α-mannosidase capable of processing asparagine-linked oligosaccharides. J. Biol. Chem. 1979;254:11655–11663. [PubMed] [Google Scholar]
- Tarentino A.L., Maley F. Purification and properties of an endo-,8-N-acetylglucosaminidase from Streptomyces griseus. J. Biol. Chem. 1974;249:811–817. [PubMed] [Google Scholar]
- Tartakoff A.M., Vassalli D. Arrest is accompanied by alterations of the Golgi complex. Vol. 146. 1977. Plasma cell immunoglobulin secretion; pp. 1332–1345. (J. Exp. Med.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tartakoff A.M., Vassalli P. Comparative studies of intracellular transport of secretory proteins. J. Cell Biol. 1978;79:694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D.B., Winzler R.J. Alkali-labile oligosaccharides. Vol. 244. 1969. Structural studies on human erythrocyte glycoproteins; pp. 5943–5946. (J. Biol. Chem.). [PubMed] [Google Scholar]
- Uchida N., Smilowitz M., Tanzer M.L. Vol. 76. 1979. Monovalent ionophores inhibit secretion of procollagen and fibronectin from cultured human fibroblasts; pp. 1868–1872. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wenske E.A., Bratton M.W., Courtney R.J. Endo-β-N-acetylglucosaminidase H sensitivity of precursors to herpes simplex virus type 1 glycoproteins gB and gC. J. Virol. 1982;44:241–248. doi: 10.1128/jvi.44.1.241-248.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]