Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 14;50(2):163–169. doi: 10.1016/0092-8674(87)90212-1

Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5′ poly(A) leader

Beate Schwer 1, Paolo Visca 1, Jan C Vos 1, Hendrik G Stunnenberg 1
PMCID: PMC7133236  PMID: 3594569

Abstract

We have demonstrated by primer elongation and cap analysis that mature vaccinia virus late transcripts are discontinuously synthesized. We have shown that RNA transcripts from a translocated 11K and from the authentic 11K and 4b late promoters are extended by approximately 35 nucleotides beyond the “start site” determined by S1 mapping using vaccinia genomic DNA as a probe. Sequencing of the RNA and of the first strand cDNA reveal that a homopolymeric poly(A) sequence is linked to the 5′ terminus of the RNA transcripts. S1 mapping of RNA transcripts with a DNA probe containing an A-stretch, replacing promoter sequences upstream of position −1, confirms the existence of a poly(A) leader of approximately 35 A-residues.

References

  1. Bablanian R., Banerjee A.K. Vol. 83. 1986. Poly (riboadenylic acid) preferentially inhibits in vitro translation of cellular mRNAs compared with vaccinia virus mRNAs: possible role in vaccinia virus cytopathology; pp. 1290–1294. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee A.K. 5′-terminal cap structure in eukaryotic messenger ribonucleic acids. Microbiol. Rev. 1980;44:175–205. doi: 10.1128/mr.44.2.175-205.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baroudy B.M., Moss B. Purification and characterization of DNA-dependent RNA polymerase from vaccinia virions. J. Biol. Chem. 1980;55:4732. [PubMed] [Google Scholar]
  4. Beaton A.R., Krug R.M. Selected host-cell capped RNA fragments prime influenza viral RNA transcription in vivo. Nucl. Acids Res. 1981;9:4423–4436. doi: 10.1093/nar/9.17.4423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bertholet C., Drillien R., Wittek R. Vol. 82. 1985. One hundred base pains of 5′ flanking sequence of a vaccinia virus late gene are sufficient to temporally regulate late transcription; pp. 2096–2100. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cochran M.A., Mackett M., Moss B. Vol. 82. 1985. Eukaryotic transient expression system dependent on transcription factors and regulatory DNA sequences of vaccinia virus; pp. 19–23. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cochran M.A., Puckett C., Moss B. In vitro mutagenesis of the promoter region for a vaccinia virus gene: evidence for tandem early and late regulatory signals. J. Virol. 1985;54:30–37. doi: 10.1128/jvi.54.1.30-37.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gubler U., Hoffmann B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  9. Hänggi M., Bannwarth W., Stunnenberg H.G. Conserved TAAAT motif in vaccinia virus promoters: overlapping TATA box and site of transcription initiation. EMBO J. 1986;5:1071–1076. doi: 10.1002/j.1460-2075.1986.tb04324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Levy C.C., Karpetsky T.P. The purification and properties of chicken liver RNase. J. Biol. Chem. 1980;255:2153–2159. [PubMed] [Google Scholar]
  11. Mackett M., Smith G.L., Moss B. Vol. 79. 1982. Vaccinia virus: a selectable eukaryotic cloning and expression vector; pp. 7415–7419. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Makino S., Stohlman S.A., Lai M.M.C. Vol. 83. 1986. Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription; pp. 4204–4208. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  14. Maxam A., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Meth. Enzymol. 1980;65:499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  15. Moss B. Poxviruses. In: Nayak D.P., editor. Vol. 2. Marcel Dekker; New York: 1978. pp. 849–890. (Molecular Biology of Animal Viruses). [Google Scholar]
  16. Munns T.W., Liszewski M.K., Tellam J.T., Sims H.F., Rhoads R.E. Antibody-nucleic acid complexes. Immunospecific retention of globin messenger ribonucleic acid with antibodies specific for 7-methylguanosineBiochemistry. 1982;21:2922–2928. doi: 10.1021/bi00541a018. [DOI] [PubMed] [Google Scholar]
  17. Murphy W.W., Watkins K.P., Agabian N. Identification of a novel Y branch structure as an intermediate in Trypanosome mRNA processing: evidence for trans splicing. Cell. 1966;47:517–525. doi: 10.1016/0092-8674(86)90616-1. [DOI] [PubMed] [Google Scholar]
  18. Nevins J.R., Joklik W.K. Poly(A) sequences of vaccinia virus messenger RNA: nature mode of addition and function during translation in vitro and in vivo. Virology. 1975;63:1–14. doi: 10.1016/0042-6822(75)90365-7. [DOI] [PubMed] [Google Scholar]
  19. Okayama H., Berg P. High-efficiency cloning of full-length cDNA. Mol. Cell. Biol. 1982;2:161–170. doi: 10.1128/mcb.2.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Panicali D., Paoletti E. Vol. 79. 1982. Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from Herpes simplex virus into the DNA of infectious Vaccinia virus; pp. 4927–4931. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Plucienniczak A., Schroeder E., Zettlmeisl G., Streeck R.E. Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. Nucl. Acids Res. 1985;13:985–998. doi: 10.1093/nar/13.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosel J., Moss B. Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. J. Virol. 1985;56:830–838. doi: 10.1128/jvi.56.3.830-838.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith G.L., Mackett M., Moss B. Recombinant vaccinia virus as new live vaccines. Biotechnol. Genet. Eng. Rev. 1984;2:383–407. doi: 10.1080/02648725.1984.10647806. [DOI] [PubMed] [Google Scholar]
  24. Spaan W.J.M., Rottier P.J.M., Horzinek M.C., Van der Zeijst B.A.M. Sequence relationship between the genome and the intracellular RNA species 1, 3, 6 and 7 of mouse hepatitis virus strain A59. J. Virol. 1982;42:432–439. doi: 10.1128/jvi.42.2.432-439.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spencer C., Loring D., Hurwitz J., Monroy G. Vol. 75. 1978. Enzymatic conversion of 5′-phosphate-terminated RNA to 5′-di- and triphosphate terminated RNA; pp. 4793–4797. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sutton R.E., Boothroyd J.C. Evidence for trans splicing in Trypanosomes. Cell. 1986;47:527–535. doi: 10.1016/0092-8674(86)90617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Urushibara T., Furuichi Y., Nishimura C., Miura K. A modified structure at the 5′-terminus of mRNA of vaccinia virus. FEBS Lett. 1975;49:385–389. doi: 10.1016/0014-5793(75)80791-5. [DOI] [PubMed] [Google Scholar]
  28. Venkatesan S., Baroudy B.M., Moss B. Distinctive nucleotides sequences adjacent to multiple initiation and termination sites of an early vaccinia virus gene. Cell. 1981;25:805–813. doi: 10.1016/0092-8674(81)90188-4. [DOI] [PubMed] [Google Scholar]
  29. Wei C.-M., Moss B. Vol. 71. 1974. Methylation of newly synthesized viral messenger RNA by an enzyme in vaccinia virus; pp. 3014–3018. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wei C.-M., Moss B. Vol. 72. 1975. Methylated nucleotides block 5′-terminus of vaccinia virus messenger RNA; pp. 318–322. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wittek R., Hänggi M., Hiller G. Mapping of a gene coding for a major late structural polypeptide in the vaccinia virus genome. J. Virol. 1984;49:371–378. doi: 10.1128/jvi.49.2.371-378.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yuen L., Moss B. Multiple 3′ ends of mRNA encoding Vaccinia virus growth factor occur within a series of repeated sequences downstream of T clusters. J. Virol. 1986;60:320–323. doi: 10.1128/jvi.60.1.320-323.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES