Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;244:19–61. doi: 10.1016/0076-6879(94)44004-2

[2] Families of serine peptidases

Neil D Rawlings, Alan J Barrett
PMCID: PMC7133253  PMID: 7845208

Publisher Summary

This chapter examines families of serine peptidases. Serine peptidases are found in viruses, bacteria, and eukaryotes. They include exopeptidases, endopeptidases, oligopeptidases, and omega peptidases. On the basis of three-dimensional structures, most of the serine peptidase families can be grouped together into about six clans that may have common ancestors. The structures are known for members of four of the clans, chymotrypsin, subtilisin, carboxypeptidase C, and Escherichia D-Ala-D-Ala peptidase A. The peptidases of chymotrypsin, subtilisin, and carboxypeptidase C clans have a common “catalytic triad” of three amino acids—namely, serine (nucleophile), aspartate (electrophile), and histidine (base). The geometric orientations of these are closely similar between families; however the protein folds are quite different. The arrangements of the catalytic residues in the linear sequences of members of the various families commonly reflect their relationships at the clan level. The members of the chymotrypsin family are almost entirely confined to animals. 10 families are included in chymotrypsin clan (SA), and all the active members of these families are endopeptidases. The order of catalytic residues in the polypeptide chain in clan SA is His/Asp/Ser.

References

  • 1.Brenner S. Nature (London) 1988;334:528. doi: 10.1038/334528a0. [DOI] [PubMed] [Google Scholar]
  • 6.N. D. Rawlings and A. J. Barrett, this series, Vol. 248, Chapter 13.
  • 7.Patthy L. Semen. Thromb. Hemostasis. 1990;16:245. doi: 10.1055/s-2007-1002677. [DOI] [PubMed] [Google Scholar]
  • 8.Venot N., Sciaky M., Puigserver A., Desnuelle P., Laurent G. Eur. J. Biochem. 1986;157:91. doi: 10.1111/j.1432-1033.1986.tb09642.x. [DOI] [PubMed] [Google Scholar]
  • 9.Chulkova T.M., Tertov V.V. FEBS Lett. 1993;336:327. doi: 10.1016/0014-5793(93)80830-n. [DOI] [PubMed] [Google Scholar]
  • 10.Hartley B.S. Vol. 205. 1979. p. 443. (Proc. R. Soc. London B). [DOI] [PubMed] [Google Scholar]
  • 11.Young C.L., Barker W.C., Tomaselli C.M., Dayhoff M.O. In: Dayhoff M.O., editor. Vol. 5. National Biomedical Research Foundation; Washington, D.C: 1978. p. 73. (Atlas of Protein Sequence and Structure). Suppl. 3. [Google Scholar]
  • 12.Delbaere L.T.J., Hutcheon W.L.B., James M.N.G., Thiessen W.E. Nature (London) 1975;257:758. doi: 10.1038/257758a0. [DOI] [PubMed] [Google Scholar]
  • 13.Delbaere L.T.J., Brayer G.D., James M.N.G. Nature (London) 1979;279:165. doi: 10.1038/279165a0. [DOI] [PubMed] [Google Scholar]
  • 14.James M.N.G., Sielecki A.R., Brayer G.D., Delbaere L.T.J., Bauer C.-A. J. Mol. Biol. 1980;144:43. doi: 10.1016/0022-2836(80)90214-4. [DOI] [PubMed] [Google Scholar]
  • 15.Fujinaga M., Read R.J., Sielecki A., Ardelt W., Laskowski M., Jr., James M.N.G. Vol. 79. 1982. p. 4868. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kakudo S., Kikuchi N., Kitadokoro K., Fujiwara T., Nakamura E., Okamoto H., Shin M., Tamaki M., Teraoka H., Tsuzuki H., Yoshida N. J. Biol. Chem. 1992;267:23782. [PubMed] [Google Scholar]
  • 17.Henderson G., Krygsman P., Liu C.J., Davey C.C., Malek L.T. J. Bacteriol. 1987;169:3778. doi: 10.1128/jb.169.8.3778-3784.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Vogel R.F., Entian K.D., Mecke D. Arch. Microbiol. 1987;149:36. doi: 10.1007/BF00423133. [DOI] [PubMed] [Google Scholar]
  • 19.Kahane S., Weinstein Y., Sarov I. Gene. 1990;90:61. doi: 10.1016/0378-1119(90)90439-x. [DOI] [PubMed] [Google Scholar]
  • 20.Choi H.-K., Tong L., Minor W., Dumas P., Boege U., Rossmann M.G., Wengler G. Nature (London) 1991;354:37. doi: 10.1038/354037a0. [DOI] [PubMed] [Google Scholar]
  • 21.Rice C.M., Strauss J.H. Vol. 78. 1981. p. 2062. (Proc. Natl. Acad. Sci. U.S.A.). [Google Scholar]
  • 22.Garoff H., Frischauf A.-M., Simons K., Lehrach H., Delius H. Vol. 77. 1980. p. 6376. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Ohara T., Makino K., Shinagawa H., Nakata A., Norioka S., Sakiyama F. J. Biol. Chem. 1989;264:20625. [PubMed] [Google Scholar]
  • 24.A. G. Plaut, this series, Vol. 248, Chapter 38.
  • 25.Bachovchin W.W., Plaut A.G., Flentke G.R., Lynch M., Kettner C.A. J. Biol. Chem. 1990;265:3738. [PubMed] [Google Scholar]
  • 26.Klauser T., Pohlner J., Meyer T.F. BioEssays. 1993;15:799. doi: 10.1002/bies.950151205. [DOI] [PubMed] [Google Scholar]
  • 27.Verchot J., Koonin E.V., Carrington J.C. Virology. 1991;185:527. doi: 10.1016/0042-6822(91)90522-d. [DOI] [PubMed] [Google Scholar]
  • 28.Verchot J., Herndon K.L., Carrington J.C. Virology. 1992;190:298. doi: 10.1016/0042-6822(92)91216-h. [DOI] [PubMed] [Google Scholar]
  • 29.Chambers T.J., Weir R.C., Grakoui A., McCourt D.W., Bazan J.F., Fletterick R.J., Rice C.M. Vol. 87. 1990. p. 8898. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Bartenschlager R., Ahlborn-Laake L., Mous J., Jacobsen H. J. Virol. 1993;67:3835. doi: 10.1128/jvi.67.7.3835-3844.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Wiskerchen M., Collett M.S. Virology. 1991;184:341. doi: 10.1016/0042-6822(91)90850-b. [DOI] [PubMed] [Google Scholar]
  • 32.Bazan J.F., Fletterick R.J. Virology. 1989;171:637. doi: 10.1016/0042-6822(89)90639-9. [DOI] [PubMed] [Google Scholar]
  • 33.Den Boon J.A., Snijder E.J., Chirnside E.D., De Vries A.A.F., Horzinek M.C., Spaan W.J.M. J. Virol. 1991;65:2910. doi: 10.1128/jvi.65.6.2910-2920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Genetics Computer Group . University of Wisconsin; Madison: 1991. (Program Manual for the GCG Package). [Google Scholar]
  • 35.Jany K.-D., Lederer G., Mayer B. FEBS Lett. 1986;199:139. [Google Scholar]
  • 36.Davison A.J. Virology. 1992;186:9. doi: 10.1016/0042-6822(92)90056-u. [DOI] [PubMed] [Google Scholar]
  • 37.Deane S.M., Robb F.T., Robb S.M., Woods D.R. Gene. 1989;76:281. doi: 10.1016/0378-1119(89)90168-6. [DOI] [PubMed] [Google Scholar]
  • 38.Tomkinson B., Jonsson A.-K. Biochemistry. 1991;30:168. doi: 10.1021/bi00215a025. [DOI] [PubMed] [Google Scholar]
  • 39.Polgár L. FEBS Lett. 1992;311:281. doi: 10.1016/0014-5793(92)81120-b. [DOI] [PubMed] [Google Scholar]
  • 40.Tan F., Morris P.W., Skidgel R.A., Erdös E.G. J. Biol. Chem. 1993;268:16631. [PubMed] [Google Scholar]
  • 41.Rawlings N.D., Polgár L., Barrett A.J. Biochem. J. 1991;279:907. doi: 10.1042/bj2790907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.David F., Bernard A.-M., Pierres M., Marguet D. J. Biol. Chem. 1993;268:17247. [PubMed] [Google Scholar]
  • 43.Roberts C.J., Pohlig G., Rothman J.H., Stevens T.H. J. Cell Biol. 1989;108:1363. doi: 10.1083/jcb.108.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Rennex D., Hemmings B.A., Hofsteenge J., Stone S.R. Biochemistry. 1991;30:2195. doi: 10.1021/bi00222a025. [DOI] [PubMed] [Google Scholar]
  • 45.Kanatani A., Masuda T., Shimoda T., Misoka F., Lin X.S., Yoshimoto T., Tsuru D. J. Biochem. (Tokyo) 1991;110:315. doi: 10.1093/oxfordjournals.jbchem.a123577. [DOI] [PubMed] [Google Scholar]
  • 46.Wada K., Yokotani N., Hunter C., Doi K., Wenthold R.J., Shimasaki S. Vol. 89. 1992. p. 197. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Yokotani N., Doi K., Wenthold R.J., Wada K. Hum. Mol. Genet. 1993;2:1037. doi: 10.1093/hmg/2.7.1037. [DOI] [PubMed] [Google Scholar]
  • 48.Galjart N.J., Morreau H., Willemsen R., Gillemans N., Bonten E.J., D'azzo A. J. Biol. Chem. 1991;266:14754. [PubMed] [Google Scholar]
  • 49.Jackman H.L., Tan F., Tamei H., Beurling-Harbury C., Li X.-Y., Skidgel R.A., Erdös E.G. J. Biol. Chem. 1990;265:11265. [PubMed] [Google Scholar]
  • 50.Breddam K. Carlsberg Res. Commun. 1986;51:83. doi: 10.1007/BF02904436. [DOI] [PubMed] [Google Scholar]
  • 51.Winther J.R., Breddam K. Carlsberg Res. Commun. 1987;52:263. [Google Scholar]
  • 52.Ollis D.L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S.M., Harel M., Remington S.J., Silman I., Schrag J., Sussman J.L., Verscheuren K.H.G., Goldman A. Protein Eng. 1992;5:197. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  • 53.Cygler M., Schrag J.D., Sussman J.L., Harel M., Silman I., Gentry M.K., Doctor B.P. Protein Sci. 1993;2:366. doi: 10.1002/pro.5560020309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.De Serres M., Sherman D., Chestnut W., Merrill B.M., Viveros O.H., Diliberto E.J., Jr. Cell. Mol. Neurobiol. 1993;13:279. doi: 10.1007/BF00733756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Michaelson S., Small D.H. Brain Res. 1993;611:75. doi: 10.1016/0006-8993(93)91779-r. [DOI] [PubMed] [Google Scholar]
  • 56.Rao R.V., Balasubramanian A.S. J. Protein Chem. 1993;12:103. doi: 10.1007/BF01024921. [DOI] [PubMed] [Google Scholar]
  • 57.Chich J.-F., Chapot-Chartier M.-P., Ribadeau-Dumas B., Gripon J.-C. FEBS Lett. 1992;314:139. doi: 10.1016/0014-5793(92)80960-o. [DOI] [PubMed] [Google Scholar]
  • 58.Mayo B., Kok J., Venema K., Bockelmann W., Teuber M., Reinke H., Venema G. Appl. Environ. Microbiol. 1991;57:38. doi: 10.1128/aem.57.1.38-44.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Nardi M., Chopin M.-C., Chopin A., Cals M.-M., Gripon J.-C. Appl. Environ. Microbiol. 1991;57:45. doi: 10.1128/aem.57.1.45-50.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Albertson N.H., Koomey M. Mol. Microbiol. 1993;9:1203. doi: 10.1111/j.1365-2958.1993.tb01249.x. [DOI] [PubMed] [Google Scholar]
  • 61.Park J.T. In: Neidhart F.C., editor. Vol. 1. American Society for Microbiology; Washington, D.C: 1987. p. 663. (Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology). [Google Scholar]
  • 62.Ghuysen J.-M. Annu. Rev. Microbiol. 1991;45:37. doi: 10.1146/annurev.mi.45.100191.000345. [DOI] [PubMed] [Google Scholar]
  • 63.Oefner C., D'Arcy A., Daly J.J., Gubernator K., Charnas R.L., Heinze I., Hubschwerlen C., Winkler F.K. Nature (London) 1990;343:284. doi: 10.1038/343284a0. [DOI] [PubMed] [Google Scholar]
  • 64.Kelly J.A., Knox J.R., Moews P.C., Hite G.J., Bartolone J.B., Zhao H., Joris B., Frère J.-M., Ghuysen J.-M. J. Biol. Chem. 1985;260:6449. [PubMed] [Google Scholar]
  • 65.Lamotte-Brasseur J., Jacob-Dubuisson F., Dive G., Frère J.M., Ghuysen J.-M. Biochem. J. 1992;282:189. doi: 10.1042/bj2820189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Strynadka N.C.J., Adachi H., Jensen S.E., Johns K., Sielecki A., Betzel C., Sutoh K., James M.N.G. Nature (London) 1992;359:700. doi: 10.1038/359700a0. [DOI] [PubMed] [Google Scholar]
  • 67.Palomeque-Messia P., Englebert S., Leyh-Bouille M., Nguyen-Distèche M., Duez C., Houba S., Dideberg O., Van Beeumen J., Ghuysen J.-M. Biochem. J. 1991;279:223. doi: 10.1042/bj2790223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Asano Y., Kato Y., Yamada A., Kondo K. Biochemistry. 1992;31:2316. doi: 10.1021/bi00123a016. [DOI] [PubMed] [Google Scholar]
  • 69.Korat B., Mottl H., Keck W. Mol. Microbiol. 1991;5:675. doi: 10.1111/j.1365-2958.1991.tb00739.x. [DOI] [PubMed] [Google Scholar]
  • 70.von Heijne G. Nucleic Acids Res. 1986;14:4683. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Dev I.K., Ray P.H., Novak P. J. Biol. Chem. 1990;265:20069. [PubMed] [Google Scholar]
  • 72.Sauer R.T., Yocum R.R., Doolittle R.F., Lewis M., Pabo C.O. Nature (London) 1982;298:447. doi: 10.1038/298447a0. [DOI] [PubMed] [Google Scholar]
  • 73.Ohlendorf D.H., Anderson W.F., Lewis M., Pabo C.O., Matthews B.W. J. Mol. Biol. 1983;169:757. doi: 10.1016/s0022-2836(83)80169-7. [DOI] [PubMed] [Google Scholar]
  • 74.Slilaty S.N., Little J.W. Vol. 84. 1987. p. 3987. (Proc. Natl. Acad. Sci. U.S.A.). [Google Scholar]
  • 75.Roland K.L., Little J.W. J. Biol. Chem. 1990;265:12828. [PubMed] [Google Scholar]
  • 76.Koch W.H., Ennis D.G., Levine A.S., Woodgate R. Mol. Gen. Genet. 1992;233:443. doi: 10.1007/BF00265442. [DOI] [PubMed] [Google Scholar]
  • 77.Hauser J., Levine A.S., Ennis D.G., Chumakov K.M., Woodgate R. J. Bacteriol. 1992;174:6844. doi: 10.1128/jb.174.21.6844-6851.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.K. Sankaran and H. C. Wu, this series, Vol. 248, Chapter 12.
  • 79.Nunnari J., Fox T.D., Walter P. Science. 1993;262:1997. doi: 10.1126/science.8266095. [DOI] [PubMed] [Google Scholar]
  • 80.Arribas J., Castaño J.G. J. Biol. Chem. 1993;268:21165. [PubMed] [Google Scholar]
  • 81.Tanaka K., Tamura T., Kumatori A., Kwak T.H., Chung C.H., Ichihara A. Biochem. Biophys, Res. Commun. 1989;164:1253. doi: 10.1016/0006-291x(89)91804-4. [DOI] [PubMed] [Google Scholar]
  • 82.Goldberg A.L. Eur. J. Biochem. 1992;203:9. doi: 10.1111/j.1432-1033.1992.tb19822.x. [DOI] [PubMed] [Google Scholar]
  • 83.Rechsteiner M., Hoffman L., Dubiel W. J. Biol. Chem. 1993;268:6065. [PubMed] [Google Scholar]
  • 84.Kroh H.E., Simon L.D. J. Bacteriol. 1990;172:6026. doi: 10.1128/jb.172.10.6026-6034.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Moore T., Keegstra K. Plant Mol. Biol. 1993;21:525. doi: 10.1007/BF00028809. [DOI] [PubMed] [Google Scholar]
  • 86.Gray J.C., Hird S.M., Dyer T.A. Plant Mol. Biol. 1990;15:947. doi: 10.1007/BF00039435. [DOI] [PubMed] [Google Scholar]
  • 87.Liu X.-Q., Jagendorf A.T. FEBS Lett. 1984;166:248. [Google Scholar]
  • 88.Offermann-Steinhard K., Herrmann R.G. Nucleic Acids Res. 1990;18:6452. doi: 10.1093/nar/18.21.6452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Mayo M.A., Robinson D.J., Jolly C.A., Hyman L. J. Gen. Virol. 1989;70:1037. doi: 10.1099/0022-1317-70-5-1037. [DOI] [PubMed] [Google Scholar]
  • 90.Amerik A.Y., Antonov V.K., Gorbalenya A.E., Kotova S.A., Rotanova T.V., Shimbarevich E.V. FEBS Lett. 1991;287:211. doi: 10.1016/0014-5793(91)80053-6. [DOI] [PubMed] [Google Scholar]
  • 91.Zwickl P., Grziwa A., Pühler G., Dahlmann B., Lottspeich F., Baumeister W. Biochemistry. 1992;31:964. doi: 10.1021/bi00119a004. [DOI] [PubMed] [Google Scholar]
  • 92.Dahlmann B., Kuehn L., Grziwa A., Zwickl P., Baumeister W. Eur. J. Biochem. 1992;2118:789. doi: 10.1111/j.1432-1033.1992.tb17249.x. [DOI] [PubMed] [Google Scholar]
  • 93.Pereira M.E., Nguyen T., Wagner B.J., Margolis J.W., Yu B., Wilk S. J. Biol. Chem. 1992;267:7949. [PubMed] [Google Scholar]
  • 94.Lilley K.S., Davison M.D., Rivett A.J. FEBS Lett. 1990;262:327. doi: 10.1016/0014-5793(90)80220-d. [DOI] [PubMed] [Google Scholar]
  • 95.Seelig A., Kloetzel P.-M., Kuehn L., Dahlmann B. Biochem. J. 1991;280:225. doi: 10.1042/bj2800225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Kuehn L., Dahlmann B., Reinauer H. Arch. Biochem. Biophys. 1992;295:55. doi: 10.1016/0003-9861(92)90487-h. [DOI] [PubMed] [Google Scholar]
  • 97.Dubiel W., Ferrell K., Pratt G., Rechsteiner M. J. Biol. Chem. 1992;267:22699. [PubMed] [Google Scholar]
  • 98.Sugimura K., Nishihara T. J. Bacteriol. 1988;170:5625. doi: 10.1128/jb.170.12.5625-5632.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Grodberg J., Dunn J.J. J. Bacteriol. 1989;171:2903. doi: 10.1128/jb.171.5.2903-2905.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.McDonough K.A., Falkow S. Mol. Microbiol. 1989;3:767. doi: 10.1111/j.1365-2958.1989.tb00225.x. [DOI] [PubMed] [Google Scholar]
  • 101.Sodeinde O.A., Subrahmanyam Y.V.B.K., Stark K., Quan T., Bao Y., Goguen J.D. Science. 1992;258:1004. doi: 10.1126/science.1439793. [DOI] [PubMed] [Google Scholar]
  • 102.Cole G.T., Zhu S., Hsu L., Kruse D., Seshan K.R., Wang F. Infect. Immun. 1991;60:416. doi: 10.1128/iai.60.2.416-427.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Yuan L., Cole G.T. Infect. Immun. 1987;55:1970. doi: 10.1128/iai.55.9.1970-1978.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Welch A.R., McNally L.M., Hall M.R.T., Gibson W. J. Virol. 1993;67:7360. doi: 10.1128/jvi.67.12.7360-7372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Moses E.K., Rood J.I., Yong W.K., Riffkin G.G. Gene. 1989;77:219. doi: 10.1016/0378-1119(89)90070-x. [DOI] [PubMed] [Google Scholar]
  • 106.Lilley G.G., Stewart D.J., Kortt A.A. Eur. J. Biochem. 1992;210:13. doi: 10.1111/j.1432-1033.1992.tb17385.x. [DOI] [PubMed] [Google Scholar]
  • 107.Pacaud M., Sibilli L., Le Bras G. Eur. J. Biochem. 1976;69:141. doi: 10.1111/j.1432-1033.1976.tb10867.x. [DOI] [PubMed] [Google Scholar]
  • 108.Ichihara S., Matsubara Y., Kato C., Akasaka K., Mizushima S. J. Bacteriol. 1993;175:1032. doi: 10.1128/jb.175.4.1032-1037.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Cho H., Cronan J.E., Jr J. Biol. Chem. 1993;268:9238. [PubMed] [Google Scholar]
  • 110.Kowit J.D., Choy W.-N., Champe S.P., Goldberg A.L. J. Bacteriol. 1976;128:776. doi: 10.1128/jb.128.3.776-784.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Methods in Enzymology are provided here courtesy of Elsevier

RESOURCES