Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 May 7;46(6):929–937. doi: 10.1016/0092-8674(86)90075-9

Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface

Thomas E Kreis ★,, Harvey F Lodish †,
PMCID: PMC7133264  PMID: 3019557

Abstract

Using ts045, a temperature sensitive strain of Vesicular stomatitis virus, we show that oligomerization of G protein is a prerequisite for its transport from RER to the Golgi apparatus and for its subsequent maturation. While wild-type G forms an oligomer in the RER, ts045 G synthesized at the nonpermissive temperature does not. When the permissive temperature is reinstated, ts045 G forms an oligomer and moves to the Golgi. The state of oligomerization was determined by chemical cross-linking and by the ability of a microinjected monoclonal antibody specific for the carboxy-terminal five amino acids of the cytoplasmic tail of G to cause patching of G in intracellular membranes. We conclude that formation of an oligomer of G protein, probably a trimer, is necessary for G protein maturation.

References

  1. Adrian M., Dubochet J., Lepault J., McDowall A.W. Cryoelectron microscopy of viruses. Nature. 1984;308:32–36. doi: 10.1038/308032a0. [DOI] [PubMed] [Google Scholar]
  2. Arnheiter H., Dubois-Dalcq M., Lazzarini R.A. Direct visualization of protein transport and processing in the living cell by microinjection of specific antibodies. Cell. 1984;39:99–109. doi: 10.1016/0092-8674(84)90195-8. [DOI] [PubMed] [Google Scholar]
  3. Atkinson P.H. Glycoprotein and protein precursors to plasma membranes in vesicular stomatitis virus infected HeLa cells. J. Supramol. Struct. 1978;8:89–109. doi: 10.1002/jss.400080108. [DOI] [PubMed] [Google Scholar]
  4. Bergmann J.E., Tokuyasu K.T., Singer S.J. Vol. 78. 1981. Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane; pp. 1746–1750. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradtzaeg P. Conjugates of immunoglobulin G with different fluorophores. 1. Characterization by anionic exchange chromatography. Scand. J. Immunol. 1973;2:273–290. doi: 10.1111/j.1365-3083.1973.tb02037.x. [DOI] [PubMed] [Google Scholar]
  6. Brockway B.E., Forster S.J., Freedman R.B. Protein disulfide-isomerase activity in chick-embryo tissues. Correlations with the biosynthesis of procollagenBiochem. J. 1980;191:873–876. doi: 10.1042/bj1910873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burke B., Griffiths G., Reggio H., Louvard D., Warren G. A monoclonal antibody against a 135 K Golgi membrane protein. EMBO J. 1982;1:1621–1628. doi: 10.1002/j.1460-2075.1982.tb01364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burnette W.N. “Western Blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radioautographic detection with antibody and radioiodinated protein A. Anal. Biochem. 1981;112:195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  9. Chamberlain J.P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal. Biochem. 1979;98:132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  10. Chatterjee P.K., Cervera M.M., Penman S. Formation of vesicular stomatitis virus nucleocapsid from cytoskeletal framework-bound N protein: possible model for structure assembly. Mol. Cell. Biol. 1984;4:2231–2234. doi: 10.1128/mcb.4.10.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crimmins D.L., Mehard W.B., Schlesinger S. Physical properties of a soluble form of the glycoprotein of vesicular stomatitis virus at neutral and acidic pH. Biochemistry. 1983;22:5770–5776. doi: 10.1021/bi00294a017. [DOI] [PubMed] [Google Scholar]
  12. Doyle C., Roth M.G., Sambrook J., Gething M.-J. Mutations in the cytoplasmic domain of influenza virus hemagglutinin affect different stages of intracellular transport. J. Cell Biol. 1985;100:704–714. doi: 10.1083/jcb.100.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dubovi E.J., Wagner R.R. Spatial relationship of the proteins of vesicular stomatitis virus: induction of reversible oligomers by cleavable protein cross-linkers and oxidation. J. Virol. 1977;22:500–509. doi: 10.1128/jvi.22.2.500-509.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edman J.C., Ellis L., Blacher R.W., Roth R.A., Rutter W.J. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature. 1985;317:267–270. doi: 10.1038/317267a0. [DOI] [PubMed] [Google Scholar]
  15. Fitting T., Kabat D. Evidence for a glycoprotein “signal” involved in transport between subcellular organelles: two membrane glycoproteins encoded by murine leukemia virus reach the cell surface at different rates. J. Biol. Chem. 1982;257:14011–14017. [PubMed] [Google Scholar]
  16. Gallione C.J., Rose J.K. A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein. J. Virol. 1985;54:374–382. doi: 10.1128/jvi.54.2.374-382.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garoff H., Kondor-Koch C., Petterson R., Burke B. Expression of Semliki Forest virus proteins from cloned complementary DNA. II. The membrane spanning glycoprotein E2 is transported to the cell surface without its normal cytoplasmic domain. J. Cell Biol. 1983;97:652–658. doi: 10.1083/jcb.97.3.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Geiger B., Singer S.J. The participation of α-actinin in the capping of cell membrane components. Cell. 1979;16:213–222. doi: 10.1016/0092-8674(79)90202-2. [DOI] [PubMed] [Google Scholar]
  19. Gibson R., Leavitt R., Kornfeld S., Schlesinger S. Synthesis and infectivity of vesicular stomatitis virus containing nonglycosylated G protein. Cell. 1978;13:671–679. doi: 10.1016/0092-8674(78)90217-9. [DOI] [PubMed] [Google Scholar]
  20. Ji T.H. The application of chemical crosslinking for studies on cell membranes and the identification of surface reporters. Biochim. Biophys. Acta. 1979;559:39–69. doi: 10.1016/0304-4157(79)90007-8. [DOI] [PubMed] [Google Scholar]
  21. Knipe D.M., Baltimore D., Lodish H.F. Maturation of viral proteins in cells infected with temperature-sensitive mutants of vesicular stomatitis virus. J. Virol. 1977;21:1149–1158. doi: 10.1128/jvi.21.3.1149-1158.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kreis T.E. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 1986;5:931–941. doi: 10.1002/j.1460-2075.1986.tb04306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kreis T.E., Birchmeier W. Microinjection of fluorescently labeled proteins into living cells with emphasis on cytoskeletal proteins. Int. Rev. Cytol. 1982;75:209–227. doi: 10.1016/s0074-7696(08)61005-0. [DOI] [PubMed] [Google Scholar]
  24. Kreis T.E., Geiger B., Schlessinger J. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell. 1982;29:835–845. doi: 10.1016/0092-8674(82)90445-7. [DOI] [PubMed] [Google Scholar]
  25. Kreis T.E., Geiger B., Schmid E., Jorcano J.L., Franke W.W. De novo synthesis and specific assembly of keratin filaments in nonepithelial cells after microinjection of mRNA for epidermal keratin. Cell. 1983;32:1125–1137. doi: 10.1016/0092-8674(83)90296-9. [DOI] [PubMed] [Google Scholar]
  26. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriphase T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Ledford B.E., Davis D.F. Kinetics of serum protein secretion by cultured hepatoma cells: evidence for multiple secretory pathways. J. Biol. Chem. 1983;258:3304–3308. [PubMed] [Google Scholar]
  28. Lehrman M.A., Goldstein J.L., Brown M.S., Russel D.W., Schneider W.J. Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell. 1985;41:735–743. doi: 10.1016/s0092-8674(85)80054-4. [DOI] [PubMed] [Google Scholar]
  29. Lenard J., Compans R.W. The membrane structure of lipid-containing viruses. Biochim. Biophys. Acta. 1974;344:51–94. doi: 10.1016/0304-4157(74)90008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lodish H.F., Kong N. Reversible block in intracellular transport and budding of mutant vesicular stomatitis virus glycoproteins. Virology. 1983;125:335–348. doi: 10.1016/0042-6822(83)90206-4. [DOI] [PubMed] [Google Scholar]
  31. Lodish H.F., Weiss R.A. Selective isolation of mutants of vesicular stomatitis virus defective in production of the viral glycoprotein. J. Virol. 1979;30:177–189. doi: 10.1128/jvi.30.1.177-189.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lodish H.F., Wirth D., Porter M. Synthesis and assembly of viral membrane proteins. In: Zimmerman M., Mumford R.A., Steiner D.F., editors. Precursor Processing in the Biosynthesis of Proteins. New York Academy of Science; New York: 1980. pp. 319–337. [DOI] [PubMed] [Google Scholar]
  33. Lodish H.F., Kong N., Snider M., Strous G.J.A.M. Hepatoma secretory proteins migrate from the rough endoplasmic reticulum to the Golgi at characteristic rates. Nature. 1983;304:80–83. doi: 10.1038/304080a0. [DOI] [PubMed] [Google Scholar]
  34. Lomant A.J., Fairbanks G. Chemical probes of extended biological structures: synthesis and properties of the cleavable protein crosslinking reagent [32S]dithiobis(succinimidyl propionate) J. Mol. Biol. 1976;104:243–261. doi: 10.1016/0022-2836(76)90011-5. [DOI] [PubMed] [Google Scholar]
  35. Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J. Cell Biol. 1982;92:92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Machamer C.E., Florkiewicz R.Z., Rose J.K. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Mol. Cell. Biol. 1985;5:3074–3083. doi: 10.1128/mcb.5.11.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Murre C., Reiss C.S., Bernabeu C., Chen L.B., Burakoff S.J., Seidman J.G. Construction, expression and recognition of an H-2 molecule lacking its carboxyl terminus. Nature. 1984;307:432–436. doi: 10.1038/307432a0. [DOI] [PubMed] [Google Scholar]
  38. Owen M.J., Kissonerghis A.-M., Lodish H.F. Biosynthesis of HLA-A and HLA-B antigens in vivo. J. Biol. Chem. 1980;255:9678–9684. [PubMed] [Google Scholar]
  39. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975;187:347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  40. Pleogh H.L., Cannon L.E., Strominger J.L. Vol. 76. 1979. Cell-free translation of the mRNAs for the heavy and light chains of HLA-A and HLA-B antigens; pp. 2273–2277. (Proc. Natl. Acad. Sci, USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Quinn P., Griffiths G., Warren G. Density of newly synthesized plasma membrane proteins in intracellular membranes. II. Biochemical studies. J. Cell Biol. 1984;98:2142–2147. doi: 10.1083/jcb.98.6.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rose J.K., Bergmann J.E. Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein. Cell. 1983;34:513–524. doi: 10.1016/0092-8674(83)90384-7. [DOI] [PubMed] [Google Scholar]
  43. Rose J.K., Gallione C.J. Nucleotide sequences of the mRNAs encoding the vesicular stomatitis virus G and M proteins determined from cDNA clones containing the complete coding regions. J. Virol. 1981;39:519–528. doi: 10.1128/jvi.39.2.519-528.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Roth J., Berger E.G. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J. Cell Biol. 1982;92:223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Roth R.A., Koshland M.E. Role of disulphide interchange enzyme in immunoglobulin synthesis. Biochemistry. 1981;20:6594–6599. doi: 10.1021/bi00526a012. [DOI] [PubMed] [Google Scholar]
  46. Sabatini D.D., Kreibich G., Morimoto T., Adesnick M. Mechanisms for the incorporation of proteins in membranes and organelles. J. Cell Biol. 1982;92:1–22. doi: 10.1083/jcb.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Saraste J., Kuismanen E. Pre- and post-Golgi vacuoies operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell. 1984;38:535–549. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
  48. Tooze J., Tooze S., Warren G. Replication of coronavirus MHV-A59 in sac− cells: determination of the first site of budding of progeny virions. Eur. J. Cell Biol. 1984;33:281–293. [PubMed] [Google Scholar]
  49. Varghese J.N., Laver W.G., Colman P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature. 1983;303:35–40. doi: 10.1038/303035a0. [DOI] [PubMed] [Google Scholar]
  50. Wehland J., Willingham M.C., Gallo M.G., Pastan I. The morphologic pathway of exocytosis of the vesicular stomatitis virus G protein in cultured fibroblasts. Cell. 1982;28:831–841. doi: 10.1016/0092-8674(82)90062-9. [DOI] [PubMed] [Google Scholar]
  51. Wickner W.T., Lodish H.F. Multiple mechanisms of protein insertion into and across membranes. Science. 1985;230:400–407. doi: 10.1126/science.4048938. [DOI] [PubMed] [Google Scholar]
  52. Williams D.B., Swiedler S.J., Hart G.W. Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J. Cell Biol. 1985;101:725–734. doi: 10.1083/jcb.101.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wilson I.A., Skehel J.J., Wiley D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3Å resolution. Nature. 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  54. Zilberstein A., Snider M.D., Porter M., Lodish H.F. Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein. Cell. 1980;21:417–427. doi: 10.1016/0092-8674(80)90478-x. [DOI] [PubMed] [Google Scholar]
  55. Zuniga M.C., Malissen B., McMillan M., Brayton P.R., Clark S.S., Forman J., Hood L. Expression and function of transplantation antigens with altered or deleted cytoplasmic domains. Cell. 1983;34:535–544. doi: 10.1016/0092-8674(83)90386-0. [DOI] [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES