Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 26;41(1):313–324. doi: 10.1016/0092-8674(85)90084-4

O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity

Harvey M Florman 1, Paul M Wassarman 1,
PMCID: PMC7133279  PMID: 2986849

Abstract

Previously, we reported that ZP3, one of three different glycoproteins present in the mouse egg's zona pellucida, serves as a sperm receptor. Furthermore, small glycopeptides derived from egg ZP3 retain full sperm receptor activity, suggesting a role for carbohydrate, rather than polypeptide chain in receptor function. Here, we report that removal of O-linked oligosaccharides from ZP3 destroys its sperm receptor activity, whereas removal of O-linked oligosaccharides has no effect. A specific size class of O-linked oligosaccharides, recovered following mild alkaline hydrolysis and reduction of ZP3, is shown to possess sperm receptor activity and to bind to sperm. The results presented strongly suggest that mouse sperm bind to eggs via O-linked oligosaccharides present on ZP3.

References

  1. Adams C.E. Species specificity in fertilization. In: Coutinho E.N., Fuchs F., editors. Physiology and Genetics of Reproduction. Plenum Press; New York: 1974. pp. 69–79. [Google Scholar]
  2. Ahuja K.K. The role of cellsurface carbohydrates. Vol. 140. 1982. Fertilization studies in the hamster; pp. 353–362. (Exp. Cell Res.). [DOI] [PubMed] [Google Scholar]
  3. Allen A. Mucus-a protective secretion of complexity. Trends Biochem. Sci. 1983;8:169–173. [Google Scholar]
  4. Anderson B., Seno N., Sampson P., Riley J.G., Hoffman P., Meyer K. Threonine and serine linkages in mucopolysaccharides and glycoproteins. J. Biol. Chem. 1964;239:PC2716–PC2717. [PubMed] [Google Scholar]
  5. Ashwell G., Harford J. Carbohydrate specific receptors in the liver. Ann. Rev. Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  6. Barnum S.R., Brown G.G. Effects of lectins and sugars on primary sperm attachment in the horseshoe crab, Limulus polyphemus L. Dev. Biol. 1983;95:352–359. doi: 10.1016/0012-1606(83)90036-2. [DOI] [PubMed] [Google Scholar]
  7. Barondes S.H. Lectins: their multiple endogenous cellular functions. Ann. Rev. Biochem. 1981;50:207–231. doi: 10.1146/annurev.bi.50.070181.001231. [DOI] [PubMed] [Google Scholar]
  8. Barros C., Leal J. In vitro fertilization and its use to study gamete interactions. In: Hafez E., Semm K., editors. In Vitro Fertilization and Embryo Transfer. Alan R. Liss; New York: 1980. pp. 37–49. [Google Scholar]
  9. Bedford J.M. Why mammalian gametes don't mix. Nature. 1981;291:286–288. doi: 10.1038/291286a0. [DOI] [PubMed] [Google Scholar]
  10. Bhavanandan V.P., Buddecke E., Carubelli R., Gottschalk A. The complete degradation of glycopeptides containing O-seryl and O-threonyl linked carbohydrate. Biochem. Biophys. Res. Comm. 1964;16:353–357. doi: 10.1016/0006-291x(64)90039-7. [DOI] [PubMed] [Google Scholar]
  11. Bleil J.D., Wassarman P.M. Mammalian sperm-egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell. 1980;20:873–882. doi: 10.1016/0092-8674(80)90334-7. [DOI] [PubMed] [Google Scholar]
  12. Bleil J.D., Wassarman P.M. Vol. 77. 1980. Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro; pp. 1029–1033. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bleil J.D., Wassarman P.M. Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte's zona pellucida. Dev. Biol. 1980;76:185–203. doi: 10.1016/0012-1606(80)90371-1. [DOI] [PubMed] [Google Scholar]
  14. Bleil J.D., Wassarman P.M. Sperm-egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev. Biol. 1983;95:317–324. doi: 10.1016/0012-1606(83)90032-5. [DOI] [PubMed] [Google Scholar]
  15. Bleil J.D., Beall C.F., Wassarman P.M. Mammalian sperm-egg interaction: fertilization of mouse eggs triggers modification of the major zona pellucida glycoprotein. Dev. Biol. 1981;86:189–197. doi: 10.1016/0012-1606(81)90329-8. [DOI] [PubMed] [Google Scholar]
  16. Bolwell G.P., Callow J.A., Callow M.W., Evans L.V. Fertilization in brown algae. II. Evidence for lectin-sensitive complementary receptors involved in gamete recognition in Fucus serratus. J. Cell Sci. 1979;36:19–30. doi: 10.1242/jcs.36.1.19. [DOI] [PubMed] [Google Scholar]
  17. Bolwell G.P., Callow J.A., Evans L.V. Fertilization in brown algae. III. Preliminary characterization of putative gamete receptors from eggs and sperm of Fucus serratus. J. Cell Sci. 1980;43:209–224. doi: 10.1242/jcs.43.1.209. [DOI] [PubMed] [Google Scholar]
  18. Brenner M., Niederwieser A. Thin layer chromatography of amino acids. Meth. Enzymol. 1967;11:39–59. [Google Scholar]
  19. Cabib E., Leloir L.F., Cardini C.E. Uridine diphosphate acetylglucosamine. J. Biol. Chem. 1953;203:1055–1070. [PubMed] [Google Scholar]
  20. Crestfield A.M., Moore S., Stein W.H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J. Biol. Chem. 1963;238:622–627. [PubMed] [Google Scholar]
  21. Cuatrecasas P., Hollenberg M.D. Membrane receptors and hormone action. Adv. Prot. Chem. 1976;30:251–451. doi: 10.1016/s0065-3233(08)60481-7. [DOI] [PubMed] [Google Scholar]
  22. Culp L.A. Biochemical determinants of cell adhesion. Curr. Topics Membranes and Transport. 1978;11:327–396. [Google Scholar]
  23. Cummings R.D., Kornfeld S., Schneider W.J., Hobgood K.K., Tolleshaug H., Brown M.S., Goldstein J.L. Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. J. Biol. Chem. 1983;258:15261–15273. [PubMed] [Google Scholar]
  24. Dubyak G.R., Kleinzeller A. Dissociation from effects of vanadate as a (Na+-K+)ATPase inhibitor. Vol. 255. 1980. The insulin-mimetic effects of vanadate in isolated rat adipocytes; pp. 5306–5312. (J. Biol. Chem.). [PubMed] [Google Scholar]
  25. Edge A.S.B., Faltynek C.R., Hof L., Reichert L.E., Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal. Biochem. 1981;118:131–137. doi: 10.1016/0003-2697(81)90168-8. [DOI] [PubMed] [Google Scholar]
  26. Elder J.H., Alexander S. Vol. 79. 1982. Endo-β-N-acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins; pp. 4540–4544. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Florman H.M., Storey B.T. Mouse gamete interactions: the zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Dev. Biol. 1982;91:121–130. doi: 10.1016/0012-1606(82)90015-x. [DOI] [PubMed] [Google Scholar]
  28. Florman H.M., Wassarman P.M. The mouse egg's receptor for sperm: involvement of O-linked carbohydrate. J. Cell Biol. 1983;97:26a. [Google Scholar]
  29. Florman H.M., Bechtol K.B., Wassarman P.M. Enzymatic dissection of the functions of the mouse egg's receptor for sperm. Dev. Biol. 1984;106:243–255. doi: 10.1016/0012-1606(84)90079-4. [DOI] [PubMed] [Google Scholar]
  30. Frazier W.A., Glaser L. Surface components and cell recognition. Ann. Rev. Biochem. 1979;48:491–523. doi: 10.1146/annurev.bi.48.070179.002423. [DOI] [PubMed] [Google Scholar]
  31. Glabe C.G. A supramolecular theory for specificity in intercellular adhesion. J. Theor. Biol. 1979;78:417–432. doi: 10.1016/0022-5193(79)90340-0. [DOI] [PubMed] [Google Scholar]
  32. Glabe C.G., Lennarz W.J. Species-specific sperm adhesion in sea urchins: a quantitative investigation of bindin mediated egg agglutination. J. Cell Biol. 1979;83:595–604. doi: 10.1083/jcb.83.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Glabe C.G., Lennarz W.J. Isolation of a high molecular weight glycoconjugate derived from the surface of S. purpuratus eggs that is implicated in sperm adhesion. J. Supramol. Struct. Cell. Biochem. 1981;15:387–394. doi: 10.1002/jsscb.1981.380150408. [DOI] [PubMed] [Google Scholar]
  34. Glabe C.B., Vacquier V.D. Vol. 75. 1978. Egg surface glycoprotein receptor for sea urchin sperm bindin; pp. 881–885. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Glabe C.B., Grabel L.B., Vacquier V.D., Rosen S.D. Carbohydrate specificity of sea urchin bindin: a cell surface lectin mediating sperm-egg interaction. J. Cell Biol. 1982;94:123–128. doi: 10.1083/jcb.94.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Greve J.M., Wassarman P.M. Mouse egg extracellular coat is a matrix of interconnected filaments possessing a structural repeat. J. Mol. Biol. 1985;181 doi: 10.1016/0022-2836(85)90089-0. in press. [DOI] [PubMed] [Google Scholar]
  37. Greve J.M., Salzmann G.S., Roller R.J., Wassarman P.M. Biosynthesis of the major zona pellucida glycoprotein secreted by oocytes during mammalian oogenesis. Cell. 1982;31:749–759. doi: 10.1016/0092-8674(82)90329-4. [DOI] [PubMed] [Google Scholar]
  38. Gulyas B.J., Schmell E.D. Sperm-egg recognition and binding in mammals. In: Jagiello G., Vogel H.J., editors. Bioregulators of Reproduction. Academic Press; New York: 1981. pp. 499–520. [Google Scholar]
  39. Gwatkin R.B.L. Plenum Press; New York: 1977. Fertilization Mechanisms in Man and Mammals. [Google Scholar]
  40. Hanafusa H., Ikenaka T., Akabori S. Studies on taka-amylase A. III. Carbohydrate component in taka-amylase A. J. Biochem. (Tokyo) 1955;42:55–62. [Google Scholar]
  41. Hanover J.A., Lennarz W.J. Transmembrane assembly of membrane and secretory glycoproteins. Arch. Biochem. Biophys. 1981;211:1–19. doi: 10.1016/0003-9861(81)90423-9. [DOI] [PubMed] [Google Scholar]
  42. Harbon S., Herman G., Rossignol B., Jolles P., Clauser H. The linkage between sugars and amino acids in ovine submaxillary gland mucoprotein “OSM”. Biochem. Biophys. Res. Comm. 1964;17:57–61. [Google Scholar]
  43. Heyraud A., Rinaudo M. Thermodynamic and steric partition mechanisms. Vol. 166. 1978. Gel permeation chromatography of glucose oligomers on polyacrylamide gels; pp. 149–158. (J. Chromatogr.). [Google Scholar]
  44. Hoffman S., Edelman G.M. Vol. 80. 1983. Kinetics of homophilic binding by E and A forms of the neural cell adhesion molecule; pp. 5762–5766. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Huang T.T.F., Ohzu E., Yanagimachi R. Evidence suggesting that L-fucose is part of a recognition signal for sperm-zona pellucida attachment in mammals. Gamete Res. 1982;5:355–361. [Google Scholar]
  46. Judson P.A., Anstee D.J., Clamp J.R. Isolation and characterization of the major oligosaccharide of human platelet membrane glycoprotein GPIb. Biochem. J. 1982;205:81–90. doi: 10.1042/bj2050081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Johnson D.C., Spear P.G. O-linked oligosaccharides are acquired by Herpes Simplex virus glycoproteins in the Golgi apparatus. Cell. 1983;32:987–997. doi: 10.1016/0092-8674(83)90083-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kessler M.J., Reddy M.S., Shah R.H., Bahl O.P. Structures on N-glycosidic carbohydrate units of human chorionic gonadotropin. J. Biol. Chem. 1979;254:7901–7908. [PubMed] [Google Scholar]
  49. Kessler M.J., Takashi M., Ghai R.D., Bahl O.P. Structure and location of the O-glycosidic carbohydrate units of human chorionic gonadotropin. J. Biol. Chem. 1979;254:7909–7914. [PubMed] [Google Scholar]
  50. Kinsey W.J., Lennarz W.J. Isolation of a glycopeptide fraction from the surface of the sea urchin egg that inhibits sperm-egg binding and fertilization. J. Cell. Biol. 1981;91:325–331. doi: 10.1083/jcb.91.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kornfeld R., Kornfeld S. Structure of glycoproteins and their oligosaccharide units. In: Lennarz W.J., editor. The Biochemistry of Glycoproteins and Proteoglycans. Plenum Press; New York: 1980. pp. 1–34. [Google Scholar]
  52. Laemmli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  53. Lloyd K.O. Glycoproteins with blood group activity. In: Aspinall G.O., editor. Vol. 7. Butterworth; London: 1976. pp. 251–281. (International Review of Science: Organic Chemistry). Series II. [Google Scholar]
  54. Marchesi V.T., Furthmayr H., Tomita M. The red cell membrane. Ann. Rev. Biochem. 1976;45:667–698. doi: 10.1146/annurev.bi.45.070176.003315. [DOI] [PubMed] [Google Scholar]
  55. Marshall R.D. Structures and functions of glycoproteins. In: Offord R.E., editor. International Review of Science. Vol. 25. University Park Press; Baltimore: 1979. pp. 1–53. (Biochemistry). Series I. [Google Scholar]
  56. Niemann H., Boschek B., Evans D., Rosing M., Tamura T., Klenk H.-D. Post-translational glycosylation of Coronavirus glycoprotein El: inhibition by monensin. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ogata S., Lloyd K.O. Mild alkaline borohydride treatment of glycoproteins-a method for liberating both N- and O-linked carbohydrate chains. Anal. Biochem. 1982;119:351–359. doi: 10.1016/0003-2697(82)90597-8. [DOI] [PubMed] [Google Scholar]
  58. Oikawa T., Yanagimachi R., Nicolson G.L. Wheat germ agglutinin blocks mammalian fertilization. Nature. 1973;241:256–259. doi: 10.1038/241256a0. [DOI] [PubMed] [Google Scholar]
  59. Olden K., Bernard B.A., White S.L., Parent J.B. Function of the carbohydrate moieties of glycoproteins. J. Cell. Biochem. 1982;18:313–335. doi: 10.1002/jcb.1982.240180306. [DOI] [PubMed] [Google Scholar]
  60. Putnam F.W. Protein denaturation. In: Neurath H., Bailey K., editors. Vol. 1. Academic Press; New York: 1954. pp. 807–892. (The Proteins). Part B. [Google Scholar]
  61. Rasilo M.-L., Renkonen O. Mild alkaline borohydride treatment liberates N-acetylglucosamine-linked oligosaccharide chains of glycoproteins. FEBS Lett. 1981;135:38–42. doi: 10.1016/0014-5793(81)80938-6. [DOI] [PubMed] [Google Scholar]
  62. Rodbell M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 1964;239:375–380. [PubMed] [Google Scholar]
  63. Roller R.J., Wassarman P.M. Role of asparagine-linked oligosaccharides in secretion of glycoproteins of the mouse egg's extracellular coat. J. Biol. Chem. 1983;258:13243–13249. [PubMed] [Google Scholar]
  64. Rosati F., De Santis R. Role of the surface carbohydrates in sperm-egg interaction in Ciona intestinalis. Nature. 1980;283:762–764. doi: 10.1038/283762a0. [DOI] [PubMed] [Google Scholar]
  65. Rossignol D.P., Lennarz W.J. Vol. 98. Pitman Books; London: 1983. The molecular basis of sperm-egg interaction in the sea urchin; pp. 268–285. (Molecular Biology of Egg Maturation, Ciba Foundation Symposium). [DOI] [PubMed] [Google Scholar]
  66. Rossignol D.P., Earles B.J., Decker G.L., Lennarz W.J. Characterization of the sperm receptor on the surface of the eggs of Strongylocentrotus purpuratus. Dev. Biol. 1984;104:308–321. doi: 10.1016/0012-1606(84)90086-1. [DOI] [PubMed] [Google Scholar]
  67. Saling P.M., Storey B.T. Chlortetracycline as a fluorescent probe for the mouse acrosome reaction. Vol. 83. 1979. Mouse gamete interactions during fertilization in vitro; pp. 544–555. (J. Cell Biol.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Salzmann G.S., Greve J.M., Roller R.J., Wassarman P.M. Biosynthesis of the sperm receptor during oogenesis in the mouse. EMBO J. 1983;2:1451–1456. doi: 10.1002/j.1460-2075.1983.tb01607.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Schachter H., Williams D. Biosynthesis of mucus glycoproteins. In: Chandler E.N., Eider J.B., Elstein M., editors. Mucus in Health and Disease. Plenum Press; New York: 1982. pp. 3–28. [Google Scholar]
  70. Schmell E.D., Gulyas B.J., Hedrick J.L. Egg surface changes during fertilization and the molecular mechanism of the block to polyspermy. In: Hartmann J.F., editor. Mechanism and Control of Animal Fertilization. Academic Press; New York: 1983. pp. 365–413. [Google Scholar]
  71. Sharon N. Their Chemistry, Biosynthesis, and Functions. Addison-Wesley; Reading, Massachusetts: 1975. Complex Carbohydrates. [Google Scholar]
  72. Shida H., Dales S. Biogenesis of Vaccinia: carbohydrates of the hemagglutinin molecule. Virology. 1981;111:56–72. doi: 10.1016/0042-6822(81)90653-x. [DOI] [PubMed] [Google Scholar]
  73. Shimamura M., Inoue Y., Inoue S. Reductive cleavage of Xaa-proline peptide bonds by mild alkaline borohydride treatment employed to release O-glycosidically linked carbohydrate units of glycoprotein. Arch. Biochem. Biophys. 1984;232:699–706. doi: 10.1016/0003-9861(84)90590-3. [DOI] [PubMed] [Google Scholar]
  74. Shimizu S., Tsuji M., Dean J. In vitro biosynthesis of three sulfated glycoproteins of murine zonae pellucidae by oocytes grown in follicle culture. J. Biol. Chem. 1983;258:5858–5863. [PubMed] [Google Scholar]
  75. Shur B.D., Hall G. A role for mouse sperm galactosyltransferases in sperm binding to the egg zona pellucida. J. Cell Biol. 1982;95:574–580. doi: 10.1083/jcb.95.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Spiro R.G., Bhoyroo V.D. Structure of the O-glycosidically linked carbohydrate unit of fetuin. J. Biol. Chem. 1974;249:5704–5717. [PubMed] [Google Scholar]
  77. Takasaki S., Kobata A. Microdetermination of sugar composition by radioisotope labelling. Meth. Enzymol. 1975;50:50–54. doi: 10.1016/0076-6879(78)50006-2. [DOI] [PubMed] [Google Scholar]
  78. Tanaka K., Bertolini M., Pigman W. Serine and threonine linkages in bovine submaxillary mucin. Biochem. Biophys. Res. Comm. 1964;16:404–409. doi: 10.1016/0006-291x(64)90366-3. [DOI] [PubMed] [Google Scholar]
  79. Thomas D.B., Winzler R.J. Alkali-labile oligosaccharides. Vol. 244. 1969. Structural studies on human erythrocyte glycoproteins; pp. 5943–5946. (J. Biol. Chem.). [PubMed] [Google Scholar]
  80. Tsuji T, Tsunehisa S., Watanabe Y., Yamamoto K., Tohyama H., Osawa T. The structure of the major serlthr-linked sugar chain. Vol. 258. 1983. The carbohydrate moiety of human platelet glycocalicin; pp. 6335–6339. (J. Biol. Chem.). [PubMed] [Google Scholar]
  81. Vacquier V.D., Moy G.W. Vol. 74. 1977. Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs; pp. 2456–2460. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Vacquier V.D., Epel D., Douglas L.A. Sea urchin eggs release protease activity at fertilization. Nature. 1972;237:34–36. doi: 10.1038/237034a0. [DOI] [PubMed] [Google Scholar]
  83. Vacquier V.D., Tegner M.J., Epel D. Protease released from sea urchin eggs at fertilization alters the vitelline layer and aids in preventing polyspermy. Exp. Cell Res. 1973;80:111–119. doi: 10.1016/0014-4827(73)90281-4. [DOI] [PubMed] [Google Scholar]
  84. Vanderheede J.R., Ahmed A.I., Feeney R.E. Structure and role of carbohydrate in the freezing point-depressing glycoproteins of antarctic fish. J. Biol. Chem. 1972;247:7885–7889. [PubMed] [Google Scholar]
  85. Wassarman P.M. Fertilization. In: Yamada K., editor. Cell Interactions and Development: Molecular Mechanisms. Wiley; New York: 1983. pp. 1–27. [Google Scholar]
  86. Wassarman P.M., Bled J.D. The role of zona pellucida glycoproteins as regulators of sperm-egg interactions in the mouse. In: Frazier W.A., Glaser L., Gottlieb D.I., editors. Cellular Recognition. Alan R. Liss; New York: 1982. pp. 845–863. [Google Scholar]
  87. Wassarman P.M., Greve J.M., Perona R.M., Roller R.J., Salzmann G.S. How mouse eggs put on and take off their extracellular coat. In: Davidson E.H., Firtel R.A., editors. Molecular Biology of Development. Alan R. Liss; New York: 1984. pp. 213–225. [Google Scholar]
  88. Wassarman P.M., Florman H.M., Greve J.M. Receptor mediated sperm-egg interactions in mammals. In: Metz C.B., Monroy A., editors. Vol. 2. Academic Press; New York: 1984. pp. 341–360. (Biology of Fertilization). [Google Scholar]
  89. Wassarman P.M., Bleil J.D., Florman H.M., Greve J.M., Roller R.J., Salzmann G.S. Nature of the mouse egg's receptor for sperm. In: Hedrick J.L., editor. The Molecular and Cellular Biology of Fertilization. Plenum Press; New York: 1985. in press. [Google Scholar]
  90. Wolf D.P. The mammalian block to polyspermy. In: Mastroianni L., Biggers J.D., editors. Fertilization and Embryonic Development In Vitro. Plenum Press; New York: 1981. pp. 183–197. [Google Scholar]
  91. Yamashita K., Mizouchi T., Kobata A. Analysis of oligosaccharides by gel filtration. Meth. Enzymol. 1982;83:105–126. doi: 10.1016/0076-6879(82)83008-5. [DOI] [PubMed] [Google Scholar]
  92. Yanagimachi R. Mechanisms of fertilization in mammals. In: Mastroianni L., Biggers J.D., editors. Fertilization and Embryonic Development In Vitro. Plenum Press; New York: 1981. pp. 82–184. [Google Scholar]
  93. Yanagimachi R. Zona-free hamster eggs: their use in assessing fertilizing capacity and examining chromosomes of human spermatozoa. Gamete Res. 1984;10:187–232. [Google Scholar]
  94. Zill L.P., Khym J.X., Cheniae G.M. Further studies on the separation of the borate complexes of sugars and related compounds by ion exchange chromatography. J. Am. Chem. Soc. 1953;75:1339–1342. [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES