Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 14;50(2):311–317. doi: 10.1016/0092-8674(87)90226-1

A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum

Svante Pääbo , Bheem M Bhat , William SM Wold , Per A Peterson ★,
PMCID: PMC7133293  PMID: 2954653

Abstract

The E19 protein of adenoviruses is a transmembrane protein that abrogates the intracellular transport of class I antigens by forming complexes with them in the ER. We show here that the E19 protein is retained in the ER even in the absence of class I antigens. To define the region conferring residency in the ER, we examined two mutant forms of the viral protein. A 5 amino acid extension of the 15-membered cytoplasmic tail of the protein reduces its interaction with class I antigens but does not change its intracellular distribution. Shortening the tail to 7 amino acids also diminishes the affinity for class I antigens; however, this mutant E19 protein becomes transported to the cell surface. Thus, we concluded that a small stretch of amino acids exposed on the cytoplasmic side of the ER membrane is responsible for the retention of the E19 protein in the ER.

References

  1. Andersson M., Pääbo S., Nilsson T., Peterson P.A. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell. 1985;43:215–222. doi: 10.1016/0092-8674(85)90026-1. [DOI] [PubMed] [Google Scholar]
  2. Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. Sequence and topology of a model intracellular membrane protein, ER glycoprotein, from a coronavirus. Nature. 1984;308:751–752. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnstable C.J., Bodmer W.F., Brown G., Galfre G., Milstein C., Williams A.F., Ziegler A. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens—new tools for genetic analysis. Cell. 1978;14:9–20. doi: 10.1016/0092-8674(78)90296-9. [DOI] [PubMed] [Google Scholar]
  4. Bhat B.M., Brady H.A., Pursley M.H., Wold W.S.M. Deletion mutants that alter differential RNA processing in the E3 complex transcription unit of adenovirus. J. Mol. Biol. 1986;190:543–557. doi: 10.1016/0022-2836(86)90240-8. [DOI] [PubMed] [Google Scholar]
  5. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 1975;67:835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonner W.M., Laskey R.A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 1974;46:83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  7. Both G.W., Mattick J.S., Bellamy A.R. Vol. 80. 1983. Serotype-specific glycoprotein of simian II rotavirus: coding assignment and gene sequence; pp. 3091–3095. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Both G.W., Siegman L.J., Bellamy A.R., Atkinson P.H. Coding assignment and nucleotide sequence of simian rotavirus SA II gene segment 10. J. Virol. 1983;48:335–339. doi: 10.1128/jvi.48.2.335-339.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brands R., Snider M.D., Hino Y., Park S.S., Gelboin H.V., Rothman J.E. Retention of membrane proteins by the endoplasmic reticulum. J. Cell Biol. 1985;101:1724–1732. doi: 10.1083/jcb.101.5.1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burgert H.-G., Kvist S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell. 1985;41:987–997. doi: 10.1016/s0092-8674(85)80079-9. [DOI] [PubMed] [Google Scholar]
  11. Chin D.J., Gil G., Russell D.W., Liscum L., Luskey K.L., Basu S.K., Okayama H., Berg P., Goldstein J.L., Brown M.S. Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature. 1984;308:613–617. doi: 10.1038/308613a0. [DOI] [PubMed] [Google Scholar]
  12. Chow L.T., Broker T.R., Lewis J.B. Complex splicing patterns of RNAs from the early regions of adenovirus-2. J. Mol. Biol. 1979;134:265–303. doi: 10.1016/0022-2836(79)90036-6. [DOI] [PubMed] [Google Scholar]
  13. Cladaras C., Wold W.S.M. DNA sequence of the early E3 transcription unit of adenovirus 5. Virology. 1985;140:28–43. doi: 10.1016/0042-6822(85)90443-x. [DOI] [PubMed] [Google Scholar]
  14. Deutscher S.L., Bhat B.M., Pursley M.H., Cladaras C., Wold W.S.M. Novel deletion mutants that enhance a distant upstream 5′ splice in the E3 transcription unit of adenovirus 2. Nucl. Acids Res. 1985;13:5771–5788. doi: 10.1093/nar/13.16.5771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fitting T., Kabat D. Evidence for a glycoprotein “signal” involved in transport between subcellular organelles. J. Biol. Chem. 1982;257:14011–14017. [PubMed] [Google Scholar]
  16. Fries E., Gustafsson L., Peterson P.A. Four secretory proteins synthesized by hepatocytes are transported from endoplasmic reticulum to Golgi complex at different rates. EMBO J. 1984;3:147–152. doi: 10.1002/j.1460-2075.1984.tb01775.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Green M., Wold W.S.M. Human adenoviruses: growth, purification and transfection assay. Meth. Enzymol. 1979;58:425–435. doi: 10.1016/s0076-6879(79)58157-9. [DOI] [PubMed] [Google Scholar]
  18. Hayman M.J., Crumpton M.J. Isolation of glycoproteins from pig lymphocyte plasma membrane using Lens culinaris phytohemagglutinin. Biochem. Biophys. Res. Commun. 1972;47:923–930. doi: 10.1016/0006-291x(72)90581-5. [DOI] [PubMed] [Google Scholar]
  19. Hérissé J., Courtois G., Galibert F. Nucleotide sequence of the EcoRI D fragment of adenovirus 2 genome. Nucl. Acids Res. 1980;8:2173–2192. doi: 10.1093/nar/8.10.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Horwich A.L., Kalousch F., Mellman I., Rosenberg L.E. A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. EMBO J. 1985;4:1129–1135. doi: 10.1002/j.1460-2075.1985.tb03750.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kabcenell A.K., Atkinson P.H. Processing of the rough endoplasmic reticulum membrane glycoproteins of rotavirus SA11. J. Cell Biol. 1985;101:1270–1280. doi: 10.1083/jcb.101.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kalderon D., Richardson W.D., Markham A.F., Smith A.E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature. 1984;311:33–38. doi: 10.1038/311033a0. [DOI] [PubMed] [Google Scholar]
  23. Kämpe O., Bellgrau D., Hammerling U., Lind P., Pääbo S., Severinsson L., Peterson P.A. Complex formation of class I transplantation antigens and a viral glycoprotein. J. Biol. Chem. 1983;258:10594–10598. [PubMed] [Google Scholar]
  24. Kelly R.B. Pathways of protein secretion in eukaryotes. Science. 1985;230:25–31. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  25. Kornfeld R., Wold W.S.M. Structure of the oligosaccharides of the glycoprotein coded by early region E3 of adenovirus 2. J. Virol. 1981;40:440–449. doi: 10.1128/jvi.40.2.440-449.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kvist S., Oestberg L., Persson H., Philipsson L., Peterson P.A. Vol. 75. 1978. Molecular association between transplantation antigens and a cell surface antigen in an adenovirus-transformed cell line; pp. 5674–5678. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Leonard W.J., Depper J.M., Crabtree G.R., Rudikoff S., Pumphrey J., Robb R.J., Krönke M., Svetlik P.B., Peffer N.J., Waldmann T.A., Greene W.C. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature. 1984;311:626–631. doi: 10.1038/311626a0. [DOI] [PubMed] [Google Scholar]
  28. Lewis M.J., Turco S.J., Green M. Structure and assembly of the endoplasmic reticulum. J. Biol. Chem. 1985;260:6926–6931. [PubMed] [Google Scholar]
  29. Maeta Y., Hamada C. Suspectability of Ad12-transformed S(+) and S(−) mouse cells to cell-mediated immunity in vitro. Microbiol. Immunol. 1979;23:1085–1095. doi: 10.1111/j.1348-0421.1979.tb00540.x. [DOI] [PubMed] [Google Scholar]
  30. Munro S., Pelham H.R.B. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987;48:899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
  31. Nikaido T., Shimizu A., Ishida N., Sabe H., Teshigawara K., Maeda M., Uchiyama T., Yodoi J., Honjo T. Molecular cloning of cDNA encoding human interleukin-2 receptor. Nature. 1984;311:631–635. doi: 10.1038/311631a0. [DOI] [PubMed] [Google Scholar]
  32. Omura R., Takesue S. A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J. Biochem. 1970;67:249–276. doi: 10.1093/oxfordjournals.jbchem.a129248. [DOI] [PubMed] [Google Scholar]
  33. Ozols J., Heinemann F.S., Johnson E.F. The complete amino acid sequence of a constitutive form of liver microsomal cytochrome P-450. J. Biol. Chem. 1985;260:5427–5434. [PubMed] [Google Scholar]
  34. Pääbo S., Weber F., Kämpe O., Schaffner W., Peterson P.A. Association between transplantation antigens and a viral membrane protein synthesized from a mammalian expression vector. Cell. 1983;33:445–453. doi: 10.1016/0092-8674(83)90426-9. [DOI] [PubMed] [Google Scholar]
  35. Pääbo S., Weber F., Nilsson T., Schaffner W., Peterson P.A. Structural and functional dissection of an MHC class I antigen-binding adenovirus glycoprotein. EMBO J. 1986;5:1921–1927. doi: 10.1002/j.1460-2075.1986.tb04445.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pääbo S., Nilsson T., Peterson P.A. Vol. 83. 1986. Adenoviruses of subgenera B, C, D and E modulate cell-surface expression of MHC class I antigens; pp. 9665–9669. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Persson H., Signäs C., Philipson L. Purification and characterization of an early glycoprotein from adenovirus type 2-infected cells. J. Virol. 1979;29:939–948. doi: 10.1128/jvi.29.3.938-948.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Persson H., Jörnvall H., Zabielski J. Vol. 77. 1980. Multiple mRNA species for the precursor to an adenovirus-encoded glycoprotein: identification and structure of the signal sequence; pp. 6349–6353. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Philipson L. Adenovirus assay by the fluorescent cell-counting procedure. Virology. 1968;15:263–268. doi: 10.1016/0042-6822(61)90357-9. [DOI] [PubMed] [Google Scholar]
  40. Poruchynsky M.S., Tyndall C., Both G.W., Sato F., Bellamy A.R., Atkinson P.H. Deletions into an NH2-terminal hydrophobic domain result in secretion of rotavirus VP7, a resident endoplasmic reticulum membrane glycoprotein. J. Cell Biol. 1985;101:2199–2209. doi: 10.1083/jcb.101.6.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rask L., Lindblom J.B., Peterson P.A. Structural and immunological similarities between HLA antigens from three loci. Eur. J. Immunol. 1976;6:93–100. doi: 10.1002/eji.1830060205. [DOI] [PubMed] [Google Scholar]
  42. Reinherz E.L., Kung P.C., Goldstein G., Levey R.H., Schlossman S.F. Vol. 77. 1980. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage; pp. 1588–1592. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rothman J.E., Fries E. Transport of newly synthesized vesicular stomatitis viral glycoprotein to purified Golgi membranes. J. Cell Biol. 1981;89:162–168. doi: 10.1083/jcb.89.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Severinsson L., Peterson P.A. β2-Microglobulin induces intracellular transport of human class I transplantation antigen heavy chains in Xenopus laevis oocytes. J. Cell Biol. 1984;99:226–232. doi: 10.1083/jcb.99.1.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Severinsson L., Peterson P.A. Abrogation of cell surface expression of human class I transplantation antigens by an adenovirus protein in Xenopus laevis oocytes. J. Cell Biol. 1985;101:540–547. doi: 10.1083/jcb.101.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Severinsson L., Martens I., Peterson P.A. Differential association between two human class I antigens and an adenoviral glycoprotein. J. Immunol. 1986;137:1003–1009. [PubMed] [Google Scholar]
  47. Signäs C., Katze M.G., Persson H., Philipson L. An adenovirus glycoprotein binds heavy chains of class I transplantation antigens from man and mouse. Nature. 1982;299:175–178. doi: 10.1038/299175a0. [DOI] [PubMed] [Google Scholar]
  48. Signäs C., Akusjärvi G., Pettersson U. Region E3 of human adenoviruses; differences between the oncogenic adenovirus-3 and the non-oncogenic adenovirus-2. Gene. 1987;50:173–184. doi: 10.1016/0378-1119(86)90322-7. [DOI] [PubMed] [Google Scholar]
  49. Tanaka K., Isselbacher K.J., Khoury G., Jay G. Reversal of oncogenesis by the expression of a major histocompatibility complex class I gene. Science. 1985;228:26–30. doi: 10.1126/science.3975631. [DOI] [PubMed] [Google Scholar]
  50. Tarentino A.L., Maley F. Purification and properties of an Endo-B-N-acetylglucosaminidase from Streptomyces griseus. J. Biol. Chem. 1974;249:811–817. [PubMed] [Google Scholar]
  51. Wold W.S.M., Cladaras C., Deutscher S.L., Kapoor Q.S. The 19 KDa glycoprotein coded by region E3 of adenovirus. J. Biol. Chem. 1985;260:2424–2431. [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES