Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;72:1–39. doi: 10.1016/S0079-6603(02)72066-7

Viral strategies of translation initiation: Ribosomal shunt and reinitiation

Lyubov A Ryabova 1, Mikhail M Pooggin 1, Thomas Hohn 1
PMCID: PMC7133299  PMID: 12206450

Abstract

Due to the compactness of their genomes, viruses are well suited to the study of basic expression mechanisms, including details of transcription, RNA processing, transport, and translation. In fact, most basic principles of these processes were first described in viral systems. Furthermore, viruses seem not to respect basic rules, and cases of “abnormal” expression strategies are quiet common, although such strategies are usually also finally observed in rare cases of cellular gene expression. Concerning translation, viruses most often violate Kozak's original rule that eukaryotic translation starts from a capped monocistronic mRNA and involves linear scanning to find the first suitable start codon. Thus, many viral cases have been described where translation is initiated from noncapped RNA, using an internal ribosome entry site. This review centers on other viral translation strategies, namely shunting and virus-controlled reinitiation as first described in plant pararetroviruses (Caulimoviridae). In shunting, major parts of a complex leader are bypassed and not melted by scanning ribosomes. In the Caulimoviridae, this process is coupled to reinitiation after translation of a small open reading frame; in other cases, it is possibly initiated upon pausing of the scanning ribosome. Most of the Caulimoviridae produce polycistronic mRNAs. Two basic mechanisms are used for their translation. Alternative translation of the downstream open reading frames in the bacilliform Caulimoviridae occurs by a leaky scanning mechanism, and reinitiation of polycistronic translation in many of the icosahedral Caulimoviridae is enabled by the action of a viral transactivator. Both of these processes are discussed here in detail and compared to related processes in other viruses and cells.

References

  • 1.G. Drugeon, S. Urcuqui-Inchima, M. Milner, G. Kadare, R. P. Valle, A. Voyatzakis, and A. L. Haenni, The Strategies of plant virus gene expression: models of economy. Plant Sci., in press.
  • 2.Hull R. Classification of reverse transcribing elements: a discussion document. Arch. Virol. 1999;144:209–213. doi: 10.1007/s007050050498. [DOI] [PubMed] [Google Scholar]
  • 3.Coffin J.M, Hughes S.H, Varmus H. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 1997. Retroviruses. [PubMed] [Google Scholar]
  • 4.Richert-Pöggeler K.R, Hohn T. Petunia vein clearing virus (PVCV): a potential retrovirus in petunia. Eur. J. Cell Biol. 2000;79:391. [Google Scholar]
  • 5.Fiitterer J, Rothnie H.M, Hohn T, Potrykus I. Rice tungro bacilliform virus open reading frames II and III are translated from polycistronic pregenomic RNA by leaky scanning. J. Virol. 1997;71:7984–7989. doi: 10.1128/jvi.71.10.7984-7989.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Jackson R.J. Comparative view of initiation site selection mechanisms. In: Sonenberg N, Hershey J.W.B, Mathews M.B, editors. Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 2000. pp. 127–183. [Google Scholar]
  • 7.Kozak M. The scanning model for translation an update. J. Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene. 1999;234:187–208. doi: 10.1016/s0378-1119(99)00210-3. [DOI] [PubMed] [Google Scholar]
  • 9.Hershey J.W.B, Merrick W.C. Pathway and mechanisms of initiation of protein synthesis. In: Sonenberg N, Hershey J.W.B, Mathews M.B, editors. Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 2000. pp. 33–88. [Google Scholar]
  • 10.Pestova T.V, Kolupaeva V.G, Lomakin I.B, Pilipenko E.V, Shatsky I.N, Agol V.I, Hellen C.U. 2nd Edition. Vol. 98. 2001. Molecular mechanisms of translation initiation in eukaryotes; pp. 7029–7036. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Bandyopadhyay A, Maitra U. Cloning and characterization of the p42 subunit of mammalian translation initiation factor 3 (eIF3): demonstration that eIF3 interacts with eIF5 in mammalian cells. Nucleic Acids Res. 1999;27:1331–1337. doi: 10.1093/nar/27.5.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Pestova T.V, Borukhov S.I, Hellen C.U. Eukaryotic ribosomes require initiation factors 1 and IA to locate initiation codons. Nature. 1998;394:854–859. doi: 10.1038/29703. [DOI] [PubMed] [Google Scholar]
  • 13.Pestova T.V, Lomakin I.B, Lee J.H, Choi S.K, Dever T.E, Hellen C.U. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature. 2000;403:332–335. doi: 10.1038/35002118. [DOI] [PubMed] [Google Scholar]
  • 14.Browning K.S. The plant translational apparatus. Plant Mol. Biol. 1996;32:107–144. doi: 10.1007/BF00039380. [DOI] [PubMed] [Google Scholar]
  • 15.Fütterer J, Holm T. Translation in plants rules and exceptions. Plant Mol. Biol. 1997;32:159–189. doi: 10.1007/BF00039382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pelletier J, Sonenberg N. Internal binding of eukaryotic ribosomes on poliovirus RNA: Translation in HeLa cell extracts. J. Virol. 1989;63:441–443. doi: 10.1128/jvi.63.1.441-444.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kozak M. 2nd Edition. Vol. 83. 1986. Influence of mRNA secondary structure on initiation by eukaryotic ribosomes; pp. 2850–2854. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eukaryotic mRNAs. Mol. Cell. Biol. 1989;9:5134–5142. doi: 10.1128/mcb.9.11.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Fütterer J, Hohn T. Translation of a polycistronic mRNA in presence of the cauliflower mosaic virus transactivator protein. EMBO J. 1991;10:3887–3896. doi: 10.1002/j.1460-2075.1991.tb04958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kozak M. Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 1989;9:5073–5080. doi: 10.1128/mcb.9.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kozak M. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  • 22.Stripecke R, Oliveira C.C, McCarthy J.E, Hentze M.W. Proteins binding to 5' untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells. Mol. Cell. Biol. 1994;14:5898–5909. doi: 10.1128/mcb.14.9.5898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Paraskeva E, Gray N.K, Schlager B, Wehr K, Hentze M.W. Ribosomal pausing and scanning arrest as mechanisms of translational regulation from cap distal iron responsive elements. Mol. Cell. Biol. 1999;19:807–816. doi: 10.1128/mcb.19.1.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334:320–325. doi: 10.1038/334320a0. [DOI] [PubMed] [Google Scholar]
  • 25.Kaminski A, Howell M.T, Jackson R.J. Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J. 1990;9:3753–3759. doi: 10.1002/j.1460-2075.1990.tb07588.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Belsham G.J. Dual initiation sites of protein synthesis on foot and mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J. 1992;11:1105–1110. doi: 10.1002/j.1460-2075.1992.tb05150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Hinnebusch A.G. Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J. Biol. Chem. 1997;272:21661–21664. doi: 10.1074/jbc.272.35.21661. [DOI] [PubMed] [Google Scholar]
  • 28.Morris D.R, Geballe A.P. Upstream open reading frames as regulators of mRNA translation. Mol. Cell. Biol. 2000;20:8635–8642. doi: 10.1128/mcb.20.23.8635-8642.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Curran J, Kolakofsky D. Scanning independent ribosomal initiation of the Sendai virus X protein. EMBO J. 1988;7:2869–2874. doi: 10.1002/j.1460-2075.1988.tb03143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Fütterer J, Gordon K, Sanfacon H, Bonneville J.M, Hohn T. Positive and negative control of translation by the leader of cauliflower mosaic virus pregenomic 35S RNA. EMBO J. 1990;9:1697–1707. doi: 10.1002/j.1460-2075.1990.tb08293.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Fütterer J, Kiss-Lśzló Z, Hohn T. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell. 1993;73:789–802. doi: 10.1016/0092-8674(93)90257-q. [DOI] [PubMed] [Google Scholar]
  • 32.Curran J, Kolakofsky D. Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo. EMBO J. 1989;8:521–526. doi: 10.1002/j.1460-2075.1989.tb03406.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Yueh A, Schneider R.J. Selective translation initiation by ribosome jumping in adenovirus infected and heat-shocked cells. Genes Deo. 1996;10:1557–1567. doi: 10.1101/gad.10.12.1557. [DOI] [PubMed] [Google Scholar]
  • 34.Yueh A, Schneider R.J. Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S-RNA. Genes Dev. 2000;14:414–421. [PMC free article] [PubMed] [Google Scholar]
  • 35.Sedman S.A, Gelembiuk G.W, Mertz J.E. Translation initiation at a downstream AUG occurs with increased efficiency when the upstream AUG is located very close to the 5' cap. J. Virol. 1990;64:453–457. doi: 10.1128/jvi.64.1.453-457.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Kozak M. A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expression. 1991;1:111–115. [PMC free article] [PubMed] [Google Scholar]
  • 37.Ruan H, Hill J.R, Fatemie-Nainie S, Morris D.R. Cell-specific translational regulation of S adenosylmethionine decarboxylase mRNA. Influence of the structure of the 5′ transcript leader on regulation by the upstream open reading frame. J. Biol. Chem. 1994;269:17905–17910. [PubMed] [Google Scholar]
  • 38.Kozak M. 2nd Edition. Vol. 87. 1990. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes; pp. 8301–8305. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Jackson R.J, Kaminski A. Internal initiation of translation in eukaryotitis: the picornavirus paradigm and beyond. RNA. 1995;1:985–1000. [PMC free article] [PubMed] [Google Scholar]
  • 40.Holcik M, Sonenberg N, Korneluk R.G. Internal ribosome initiation of translation and the control of cell death. Trends Genet. 2000;16:469–473. doi: 10.1016/s0168-9525(00)02106-5. [DOI] [PubMed] [Google Scholar]
  • 41.Pestova T.V, Shatsky I.N, Hellen C.U. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol. Cell. Biol. 1996;16:6870–6878. doi: 10.1128/mcb.16.12.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Belsham G.J, Sonenberg N. Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol. 2000;8:330–335. doi: 10.1016/s0966-842x(00)01788-1. [DOI] [PubMed] [Google Scholar]
  • 43.Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 1992;66:1476–1483. doi: 10.1128/jvi.66.3.1476-1483.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Kozak M. Effects of intereistronic length on the efficiency of reinitiation by eukaryotic ribosomes. Mol. Cell. Biol. 1987;7:3438–3445. doi: 10.1128/mcb.7.10.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Fiitterer J, Hohn T. Role of an upstream open reading frame in the translation of polycistronic mRNA in plant cells. Nucleic Acids Res. 1992;20:3851–3857. doi: 10.1093/nar/20.15.3851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Luukkonen B.G, Tan W, Schwartz S. Efficiency of reinitiation of translation on human immunodeficiency virus type 1 mRNAs is determined by the length of the upstream open reading frame and by intercistronic distance. J. Virol. 1995;69:4086–4094. doi: 10.1128/jvi.69.7.4086-4094.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Miller P.F, Hinnebusch A.G. Sequences that surround the stop codons of upstream open reading frames in GCN4 mRNA determine their distinct functions in translation control. Genes Dev. 1989;3:1217–1225. doi: 10.1101/gad.3.8.1217. [DOI] [PubMed] [Google Scholar]
  • 48.Lovett P.S, Rogers E.J. Ribosome regulation by the nascent peptide. Microbiol. Rev. 1996;60:366–385. doi: 10.1128/mr.60.2.366-385.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Hill J.R, Morris D.R. Cell specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Dependence on translation and coding capacity of the cis-acting upstream open reading frame. J. Biol. Chem. 1993;268:726–731. [PubMed] [Google Scholar]
  • 50.Ruiz-Echevarria M.J, Czaphnski K, Peltz S.W. Making sense of nonsense in yeast. Trends Biochem. Sci. 1996;21:433–438. doi: 10.1016/s0968-0004(96)10055-4. [DOI] [PubMed] [Google Scholar]
  • 51.Vilela C, Ramirez C.V, Linz B, Rodrigues-Pousada C, McCarthy J.E. Post termination ribosome interactions with the 5'UTR modulate yeast mRNA stability. EMBO J. 1999;18:3139–3152. doi: 10.1093/emboj/18.11.3139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Peabody D.S, Subramani S, Berg P. Effect of upstream reading frames on translation efficiency in simian virus 40 recombinants. Mol. Cell. Biol. 1986;6:2704–2711. doi: 10.1128/mcb.6.7.2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Peabody D.S, Berg P. Termination reinitiation occurs in the translation of mammalian cell mRNAs. Mol. Cell. Biol. 1986;6:2695–2703. doi: 10.1128/mcb.6.7.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Yu S.F, Sullivan M.D, Linial M.L. Evidence that the human foamy virus genome is DNA. J. Virol. 1999;73:1565–1572. doi: 10.1128/jvi.73.2.1565-1572.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Linial M.L. Foamy viruses are unconventional retroviruses. J. Virol. 1999;73:1747–1755. doi: 10.1128/jvi.73.3.1747-1755.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Lecellier C.H, Saib A. Foamy viruses: between retroviruses and pararetroviruses. Virology. 2000;271:1–8. doi: 10.1006/viro.2000.0216. [DOI] [PubMed] [Google Scholar]
  • 57.Farabaugh P.J. Translational frameshifting: implications for the mechanism of translational frame maintenance. Prog. Nucleic Acid Res. Mol. Biol. 2000;64:131–170. doi: 10.1016/s0079-6603(00)64004-7. [DOI] [PubMed] [Google Scholar]
  • 58.Schwartz S, Felber B.K, Pavlakis G.N. Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol. Cell. Biol. 1992;12:207–219. doi: 10.1128/mcb.12.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Bonneville J.M, Sanfacon H, Fiitterer J, Hohn T. Posttranscriptional transactivation in cauliflower mosaic virus. Cell. 1989;59:1135–1143. doi: 10.1016/0092-8674(89)90769-1. [DOI] [PubMed] [Google Scholar]
  • 60.Lin C.-G, Lo S.J. Evidence for the involvement of a ribosomal leaky scanning mechanism in the translation of the hepatitis B virus pol-gene from the viral pregenome RNA. Virology. 1992;188:342–352. doi: 10.1016/0042-6822(92)90763-f. [DOI] [PubMed] [Google Scholar]
  • 61.Fouillot N, Tlouzeau S, Rossignol J.M, Jean-Jean O. Translation of the hepatitis B virus P gene by ribosomal scanning as an alternative to internal initiation. J. Viral. 1993;67:4886–4895. doi: 10.1128/jvi.67.8.4886-4895.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hwang W.L, Su T.S. Translational regulation of hepatitis B virus polymerase gene by termination-reinitiation of an upstream minicistron in a length dependent manner. J. Gen. Virol. 1998;79:2181–2189. doi: 10.1099/0022-1317-79-9-2181. (Pt 9) [DOI] [PubMed] [Google Scholar]
  • 63.Jean-Jean O, Weimer T, deRecondo A.M, Will H, Rossignol J.-M. Internal entry of ribosomes and ribosomal scanning involved in HBV P gene expression. J. Virol. 1989;63:5451–5454. doi: 10.1128/jvi.63.12.5451-5454.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Chang L.-J, Ganem D.V, Varmus H.E. 2nd Edition. Vol. 87. 1990. Mechanism of translation of the hepadnaviral polymerase (P) gene; pp. 5158–5162. (Proc. Nad. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Nassal M, Junker-Niepmann M, Schaller H. Translational inactivation of RNA function: Discrimination against a subset of genomic transcripts during HBV nucleocapsid assembly. Cell. 1990;63:1357–1363. doi: 10.1016/0092-8674(90)90431-d. [DOI] [PubMed] [Google Scholar]
  • 66.Tavis J.E, Ganem D.V. 2nd Edition. Vol. 90. 1993. Expression of functional hepatitis B virus polymerase in yeast reveals it to be the sole viral protein required for correct initiation of reverse transcription; pp. 4107–4111. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Beck J, Nassal M. Formation of a functional hepatitis B virus replication initiation complex involves a major structural alteration in the RNA template. Mol. Cell. Biol. 1998;18:6265–6272. doi: 10.1128/mcb.18.11.6265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Ho T.C, Jeng K.S, Hu C.P, Chang C. Effects of genomic length on translocation of hepatitis B virus polymerase-linked oligomer. J. Virol. 2000;74:9010–9018. doi: 10.1128/jvi.74.19.9010-9018.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Hwang W.L, Su T.S. The encapsidation signal of hepatitis B virus facilitates preC AUG recognition resulting in inefficient translation of the downstream genes. J. Gen. Viral. 1999;80:1769–1776. doi: 10.1099/0022-1317-80-7-1769. [DOI] [PubMed] [Google Scholar]
  • 70.Fütterer J, Potrykus I, Bao Y, Li L, Burns T.M, Hull R, Hohn T. Position-dependent ATT initiation during plant pararetrovirus Rice Tungro Bacilliform Virus translation. J. Viral. 1996;70:2999–3010. doi: 10.1128/jvi.70.5.2999-3010.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Guerra-Peraza O, de Tapia M, Hohn T, Hemmings-Mieszczak M. Interaction of the cauliflower mosaic virus coat protein with the pregenomic RNA leader. J. Virol. 2000;74:2067–2072. doi: 10.1128/jvi.74.5.2067-2072.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Pooggin M.M, Fütterer J, Skryabin K.G, Holm T. A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J. Gen. Virol. 1999;80:2217–2228. doi: 10.1099/0022-1317-80-8-2217. [DOI] [PubMed] [Google Scholar]
  • 73.Messer L.I, Levin J.G, Chattopadhyay S.K. Metabolism of viral RNA in murine leukemia virus infected cells; evidence for differential stability of viral message and virion precursor RNA. J. Virol. 1981;40:683–690. doi: 10.1128/jvi.40.3.683-690.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Dorman N, Lever A. Comparison of viral genomic RNA sorting mechanisms in human immunodeficiency virus type 1(HIV 1), HIV 2, and Moloney murine leukemia virus. J. Viral. 2000;74:11413–11417. doi: 10.1128/jvi.74.23.11413-11417.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Darlix J.L, Zuker M, Spahr P.F. Structure function relationship of Rous sarcoma virus leader RNA. Nucleic Acids Res. 1982;10:5183–5196. doi: 10.1093/nar/10.17.5183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Donzé O, Spahr P.-F. Role of the open reading frames of Rous sarcoma virus leader RNA in translation and genome packaging. EMBO J. 1992;11:3747–3757. doi: 10.1002/j.1460-2075.1992.tb05460.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Moustakas A, Sonstegard T.S, Hackett P.B. Effects of the open reading frames in the Rous sarcoma virus leader RNA on translation. J. Virol. 1993;67:4350–4357. doi: 10.1128/jvi.67.7.4350-4357.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Donzé O, Damay P, Spahr P.F. The first and third uORFs in RSV leader RNA are efficiently translated: implications for translational regulation and viral RNA packaging. Nucleic Acids Res. 1995;23:861–868. doi: 10.1093/nar/23.5.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Sonstegard T.S, Hackett P.B. Autogenous regulation or RNA translation and packaging by Rous sarcoma virus Pr76gag. J. Virol. 1996;70:6642–6652. [PMC free article] [PubMed] [Google Scholar]
  • 80.Deffaud C, Darlix J.L. Rous sarcoma virus translation revisited: characterization of an internal ribosome entry segment in the 5′ leader of the genomic RNA. J. Virol. 2000;74:11581–11588. doi: 10.1128/jvi.74.24.11581-11588.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Ryabova L.A, Holm T. Ribosome shunting in the cauliflower mosaic virus 35S RNA leader is a special case of reinitiation of translation functioning in plant and animal systems. Genes Dev. 2000;14:817–829. [PMC free article] [PubMed] [Google Scholar]
  • 82.Ohlmann T, Lopez-Lastra M, Darlix J.L. An internal ribosome entry segment promotes translation of the simian immunodeficiency virus genomic RNA. J. Biol. Chem. 2000;275:11899–11906. doi: 10.1074/jbc.275.16.11899. [DOI] [PubMed] [Google Scholar]
  • 83.Buck C.B, Shen X, Egan M.A, Pierson T.C, Walker C.M, Siliciano R.F. The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J. Virol. 2001;75:181–191. doi: 10.1128/JVI.75.1.181-191.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Berlioz C, Darlix J.L. An internal ribosomal entry mechanism promotes translation of murine leukemia virus gag polyprotein precursors. J. Viral. 1995;69:2214–2222. doi: 10.1128/jvi.69.4.2214-2222.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Berlioz C, Torrent C, Darlix J.L. An internal ribosomal entry signal in the rat VL30 region of the Harvey murine sarcoma virus leader and its use in dicistronic retroviral vectors. J. Virol. 1995;69:6400–6407. doi: 10.1128/jvi.69.10.6400-6407.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Lopez-Lastra M, Gabus C, Darlix J.L. Characterization of an internal ribosomal entry segment within the 5' leader of avian reticuloendotheliosis virus type A RNA and development of novel MLVREVbased retroviral vectors. Hum. Gene Ther. 1997;8:1855–1865. doi: 10.1089/hum.1997.8.16-1855. [DOI] [PubMed] [Google Scholar]
  • 87.Miele G, Mouland A, Harrison G.P, Cohen E, Lever A.M. The human immunodeficiency virus type 1–5′ packaging signal structure affects translation but does not function as an internal ribosome entry site structure. J. Virol. 1996;70:944–951. doi: 10.1128/jvi.70.2.944-951.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Jacks T, Power M.D, Masiarz F.R, Luciw P.A, Barr P.J, Varmus H.E. Characterization of ribosomal frameshifting in HIV -1 gag-pol expression. Nature. 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  • 89.Shehu-Xhilaga M, Crowe S.M, Mak J. Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J. Viral. 2001;75:1834–1841. doi: 10.1128/JVI.75.4.1834-1841.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Farabaugh P.J. Programmed translational frameshifting. Microbiol. Rev. 1996;60:103–134. doi: 10.1128/mr.60.1.103-134.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Gesteland R.F, Atkins J.F. Recoding: dynamic reprogramming of translation. Annu. Rev. Biochem. 1996;65:741–768. doi: 10.1146/annurev.bi.65.070196.003521. [DOI] [PubMed] [Google Scholar]
  • 92.Philipson L, Andersson P, Olshevsky U, Weinberg R, Baltimore D, Gesteland R. Translation of MuLV and MSV RNAs in nuclease treated reticulocyte extracts: enhancement of the gag-pol polypeptide with yeast suppressor tRNA. Cell. 1978;13:189–199. doi: 10.1016/0092-8674(78)90149-6. [DOI] [PubMed] [Google Scholar]
  • 93.Rein A, Levin J.G. Readthrough suppression in the mammalian type C retroviruses and what it has taught us. New Biol. 1992;4:283–289. [PubMed] [Google Scholar]
  • 94.Herr A.J, Wills N.M, Nelson C.C, Gesteland R.F, Atkins J.F. Drop off during ribosome hopping. J. Mal. Biol. 2001;311:445–452. doi: 10.1006/jmbi.2001.4899. [DOI] [PubMed] [Google Scholar]
  • 95.Chang L.-J, Pryciak P, Ganem D.V, Varmus H.E. Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting. Nature. 1989;337:364–367. doi: 10.1038/337364a0. [DOI] [PubMed] [Google Scholar]
  • 96.Schlicht H.-J, Salfeld J, Schaller H. Synthesis and encapsidation of duck hepatitis B virus reverse transcriptase do not require formation of core polymerase fusion proteins. Cell. 1989;56:85–92. doi: 10.1016/0092-8674(89)90986-0. [DOI] [PubMed] [Google Scholar]
  • 97.Schultze M, Hohn T, Jiricny J. The reverse transcriptase gene of CaMV is translated separately from the capsid gene. EMBO J. 1990;9:1177–1185. doi: 10.1002/j.1460-2075.1990.tb08225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Fütterer J, Bonneville J.M, Gordon K, DeTapia M, Karlsson S, Hohn T. Expression from polycistronic cauliflower mosaic virus pregenomic RNA. In: McCarthy J.E.G, Tuite M.F, editors. Posttranscriptional Control of Gene Expression. Springer; Berlin: 1990. pp. 349–357. [Google Scholar]
  • 99.Kiss-László Z, Blanc S, Hohn T. Splicing of Cauliflower Mosaic Virus 35S RNA is essential for viral Infectivity. EMBO J. 1995;14:3552–3562. doi: 10.1002/j.1460-2075.1995.tb07361.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Plant A.L, Covey S.N, Grierson D. Detection of a subgenomic mRNA for gene V, the putative reverse transcriptase gene of cauliflower mosaic virus. Nucleic Acids Res. 1985;13:8305–8321. doi: 10.1093/nar/13.23.8305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Enssle J, Jordan I, Mauer B, Rethwilm A. 2nd Edition. Vol. 93. 1996. Foamy virus reverse transcriptase is expressed independently from the Gag protein; pp. 4137–4141. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Yu S.F, Baldwin D.N, Gwynn S.R, Yendapalli S, Linial M.L. Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science. 1996;271:1579–1582. doi: 10.1126/science.271.5255.1579. [DOI] [PubMed] [Google Scholar]
  • 103.de Kochko A, Verdaguer B, Taylor N, Carcamo R, Beachy R.N, Fauquet C. Cassava Vein mosaic virus (CsVMV), type species for a new genus of plant double stranded DNA viruses? Arch. Viral. 1998;143:945–962. doi: 10.1007/s007050050344. [DOI] [PubMed] [Google Scholar]
  • 104.Levin H.L, Weaver D.C, Boeke J.D. Novel gene expression mechanism in a fission yeast retroelement: Tfl proteins are derived from a single primary translation-product. EMBO J. 1993;12:4885–4895. doi: 10.1002/j.1460-2075.1993.tb06178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Hemmings-Mieszczak M, Steger G, Hohn T. Alternative structures of the cauliflower mosaic virus 35 S RNA leader: implications for viral expression and replication. J. Mol. Biol. 1997;267:1075–1088. doi: 10.1006/jmbi.1997.0929. [DOI] [PubMed] [Google Scholar]
  • 106.Fütterer J, Gordon K, Pfeiffer P, Sanfacon H, Pisan B, Bonneville J.M, Hohn T. Differential inhibition of downstream gene expression by the CaMV 358 RNA leader. Virus Genes. 1989;3:45–55. doi: 10.1007/BF00301986. [DOI] [PubMed] [Google Scholar]
  • 107.Schmidt-Puchta W, Dominguez D, Lewetag D, Hohn T. Plant ribosome shunting in vitro. Nucleic Acids Res. 1997;25:2854–2860. doi: 10.1093/nar/25.14.2854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Hemmings-Mieszczak M, Hohn T, Preiss T. Termination and peptide release at the upstream open reading frame are required for downstream translation on synthetic shuntcompetent mRNA leaders. Mol. Cell. Biol. 2000;20:6212–6223. doi: 10.1128/mcb.20.17.6212-6223.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Scharer-Heànhndez N, Hohn T. Nonlinear ribosome migration on cauliflower mosaic virus 358 RNA in transgenic tobacco plants. Virology. 1998;242:403–413. doi: 10.1006/viro.1998.9038. [DOI] [PubMed] [Google Scholar]
  • 110.Dominguez D.I, Ryabova L.A, Pooggin M.M, Schmidt-Puchta W, Fiitterer J, Hohn T. Ribosome shunting in cauliflower mosaic virus. Identification of an essential and sufficient structural element. J. Biol. Chem. 1998;273:3669–3678. doi: 10.1074/jbc.273.6.3669. [DOI] [PubMed] [Google Scholar]
  • 111.Pooggin M.M, Hohn T, Futterer J. Forced evolution reveals the importance of short open reading frame A and secondary structure in the cauliflower mosaic virus 358 RNA leader. J. Virol. 1998;72:4157–4169. doi: 10.1128/jvi.72.5.4157-4169.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Pooggin M.M, Futterer J, Skryabin K.G, Hohn T. 2nd Edition. Vol. 98. 2001. Ribosome shunt is essential for infectivity of cauliflower mosaic virus; pp. 886–891. (Proc. Nad. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Pooggin M.M, Hohn T, Futterer J. Role of a short open reading frame in ribosome shunt on the cauliflower mosaic virus RNA leader. J. Biol. Chem. 2000;275:17288–17296. doi: 10.1074/jbc.M001143200. [DOI] [PubMed] [Google Scholar]
  • 114.Hohn T, Corsten S, Dominguez D, Futterer J, Kirk D, Hemmings-Mieszczak M, Pooggin M, Scharer-Hernandez N, Ryabova L. Shunting is a translation strategy used by plant pararetroviruses (Caulimoviridae) Micron. 2001;32:51–57. doi: 10.1016/s0968-4328(00)00020-2. [DOI] [PubMed] [Google Scholar]
  • 115.Hemmings-Mieszczak M, Steger G, Hohn T. Regulation of CaMV 35 S RNA translation is mediated by a stable hairpin in the leader. RNA. 1998;4:101–111. [PMC free article] [PubMed] [Google Scholar]
  • 116.Hemmings-Mieszczak M, Hohn T. A stable hairpin preceded by a short open reading frame promotes nonlinear ribosome migration on a synthetic mRNA leader. RNA. 1999;5:1149–1157. doi: 10.1017/s1355838299990325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Reynolds J.E, Kaminski A, Kettinen H.J, Grace K, Clarke B.E, Carroll A.R, Rowlands D.J, Jackson R.J. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 1995;14:6010–6020. doi: 10.1002/j.1460-2075.1995.tb00289.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Hill J.R, Morris D.R. Cell-specific translation of S-adenosylmethionine decarboxylase mRNA. Regulation by the 5' transcript leader. J. Biol. Chem. 1992;267:21886–21893. [PubMed] [Google Scholar]
  • 119.Ryabova L.A, Pooggin M.M, Dominguez D.I, Hohn T. Continuous and discontinuous ribosome scanning on the cauliflower mosaic virus 35 S RNA leader is controlled by short open reading frames. J. Biol. Chem. 2000;275:37278–37284. doi: 10.1074/jbc.M004909200. [DOI] [PubMed] [Google Scholar]
  • 120.Zhang Y, Dolph P.J, Schneider R.J. Secondary structure analysis of adenovirus tripartite leader. J. Biol. Chem. 1989;264:10679–10684. [PubMed] [Google Scholar]
  • 121.Dolph P.J, Huang J.T, Schneider R.J. Translation by the adenovirus tripartite leader: elements which determine independence from cap-binding protein complex. J. Virol. 1990;64:2669–2677. doi: 10.1128/jvi.64.6.2669-2677.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Owens G.C, Chappell S.A, Mauro V.P, Edelman G.M. 2nd Edition. Vol. 98. 2001. Identification of two short internal ribosome entry sites selected from libraries of random oligonucleotides; pp. 1471–1476. (Proc. Nod. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Zhang Y, Feigenblum D, Schneider R.J. A late adenovirus factor induces elF 4E dephosphorylation and inhibition of cell protein synthesis. J. Viral. 1994;68:7040–7050. doi: 10.1128/jvi.68.11.7040-7050.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Cuesta R, Yi Q, Schneider R.J. Adenovirus-specific translation by displacement of kinase Mnkl from cap initiation complex eIF4F. EMBO J. 2000;19:3465–3474. doi: 10.1093/emboj/19.13.3465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Schneider R.J. Adenovirus inhibition of cellular protein synthesis and preferential translation of viral mRNAs. In: Sonenberg N, Hershey M.B, Mathews M.B, editors. Translational Control of Gene Expression. Cold Spring Harbor Press; Cold Spring Harbor, New York: 2000. pp. 901–914. [Google Scholar]
  • 126.Curran J, Kolakofsky D. Replication of paramyxoviruses. Adv. Virus Res. 1999;54:403–422. doi: 10.1016/s0065-3527(08)60373-5. [DOI] [PubMed] [Google Scholar]
  • 127.Giorgi C, Blumberg B.M, Kolakofsky D. Sendai virus contains overlapping genes expressed from a single mRNA. Cell. 1983;35:829–836. doi: 10.1016/0092-8674(83)90115-0. [DOI] [PubMed] [Google Scholar]
  • 128.Gupta K.C, Patwardhan S. ACG, the initiator codon for a Sendai virus protein. J. Biol. Chem. 1998;263:8553–8556. [PubMed] [Google Scholar]
  • 129.Patwardhan S, Gupta K.C. Translation initiation potential of the 5′ proximal AUGs of the polycistronic P/C mRNA of Sendai virus. A multipurpose vector for site specific mutagenesis. J. Biol. Chem. 1988;263:4907–4913. [PubMed] [Google Scholar]
  • 130.Latorre P, Kolakofsky D, Curran J. Sendai virus Y proteins are initiated by a ribosomal shunt. Mol. Cell. Biol. 1998;18:5021–5031. doi: 10.1128/mcb.18.9.5021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Wolin S.L, Walter P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 1988;7:3559–3569. doi: 10.1002/j.1460-2075.1988.tb03233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Stem P.L, Stanley M.A. Oxford University Press; Oxford: 1994. Human Papillomaviruses and Cervical Cancer. [Google Scholar]
  • 133.Barbosa M.S, Wettstein F.O. E2 of cottontail rabbit papillomavirus is a nuclear phosphoprotein translated from an mRNA encoding multiple open reading frames. J. Virol. 1988;62:3242–3249. doi: 10.1128/jvi.62.9.3242-3249.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Roggenbuck B, Larsen P.M, Fey S.J, Bartsch D, Gissmann L, Schwarz E. Human papillomavirus type 18 E6∗, E6, and E7 protein synthesis in cell free translation systems and comparison of E6 and E7 in vitro translation products to proteins immunoprecipitated from human epithelial cells. J. Virol. 1991;65:5068–5072. doi: 10.1128/jvi.65.9.5068-5072.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Stacey S.N, Jordan D, Snijders P.J, Mackett M, Walboomers J.M, Arrand J.R. Translation of the human papillomavirus type 16 E7 oncoprotein from bicistronic mRNA is independent of splicing events within the E6 open reading frame. J. Virol. 1995;69:7023–7031. doi: 10.1128/jvi.69.11.7023-7031.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Remm M, Remm A, Ustav M. Human papillomavirus type 18 El protein is translated from polycistronic mRNA by a discontinuous scanning mechanism. J. Virol. 1999;73:3062–3070. doi: 10.1128/jvi.73.4.3062-3070.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Stacey S.N, Jordan D, Williamson A.J, Brown M, Coote J.H, Arrand J.R. Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J. Virol. 2000;74:7284–7297. doi: 10.1128/jvi.74.16.7284-7297.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Wiklund L, Spangberg K, Goobar-Larsson L, Schwartz S. Cap and polyA tail enhance translation initiation at the hepatitis C virus internal ribosome entry site by a discontinuous scanning, or shunting, mechanism. J. Hum. Virol. 2001;4:74–84. [PubMed] [Google Scholar]
  • 139.Poyry T.A, Hentze M.W, Jackson R.J. Construction of regulatable picornavirus IRESes as a test of current models of the mechanism of internal translation initiation. RNA. 2001;7:647–660. doi: 10.1017/s1355838201001911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.O'Connor J.B, Brian D.A. Downstream ribosomal entry for translation of coronavirus TGEV gene 3b. Virology. 2000;269:172–182. doi: 10.1006/viro.2000.0218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Carter P.S, Jarquin-Pardo M, De Benedetti A. Differential expression of Mycl and Myc2 isoforms in cells transformed by eIF4E: evidence for internal ribosome entry site. Oncogene. 1999;18:4326–4335. doi: 10.1038/sj.onc.1202890. [DOI] [PubMed] [Google Scholar]
  • 142.Nanbru C, Lafon I, Audigier S, Gensac M.C, Vagner S, Huez G, Prats A.C. Alternative translation of the proto oncogene c-myc by an internal ribosome entry site. J. Biol. Chem. 1997;272:32061–32066. doi: 10.1074/jbc.272.51.32061. [DOI] [PubMed] [Google Scholar]
  • 143.Nanbru C, Prats A.C, Droogmans L, Defrance P, Huez G, Kruys V. Translation of the human c-myc PO tricistronic mRNA involves two independent internal ribosome entry sites. Oncogene. 2001;20:4270–4280. doi: 10.1038/sj.onc.1204548. [DOI] [PubMed] [Google Scholar]
  • 144.Janosi L, Mottagui-Tabar S, Isaksson L.A, Sekine Y, Ohtsubo E, Zhang S, Goon S, Nelken S, Shuda M, Kaji A. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 1998;17:1141–1151. doi: 10.1093/emboj/17.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Gray T.A, Saitoh S, Nicholls R.D. 2nd Edition. Vol. 96. 1999. An imprinted, mammalian bicistronic transcript encodes two independent proteins; pp. 5616–5621. (Proc. Nad. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Ilves H, Kahre O, Speek M. Translation of the rat LINE bicistronic RNAs in vitro involves ribosomal reinitiation instead of frameshifting. Mol. Cell. Biol. 1992;12:4242–4248. doi: 10.1128/mcb.12.9.4242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.McMillan J.P, Singer M.F. 2nd Edition. Vol. 90. 1993. Translation of the human LINE-1 element, L1Hs; pp. 11533–11537. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Bouhidel K, Terzian C, Pinon H. The full length transcript of the I factor, a LINE element of Drosophila melanogaster, is a potential bicistronic RNA messenger. Nucleic Acids Res. 1994;22:2370–2374. doi: 10.1093/nar/22.12.2370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Andrews J, Smith M, Merakovsky J, Coulson M, Hannan F, Kelly L.E. The stoned locus of Drosophila melanogaster produces a dicistronic transcript and encodes two distinct polypeptides. Genetics. 1996;143:1699–1711. doi: 10.1093/genetics/143.4.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Brogna S, Ashburner M. The Adh-related gene of Drosophda melanogaster is expressed as a functional dicistronic messenger RNA: multigenic transcription in higher organisms. EMBO J. 1997;16:2023–2031. doi: 10.1093/emboj/16.8.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Liu H, Jang J.K, Graham J, Nycz K, McKim K.S. Two genes required for meiotic recombination in Drosophila are expressed from a dicistronic message. Genetics. 2000;154:17351746. doi: 10.1093/genetics/154.4.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Szabo G, Katarova Z, Greenspan R. Distinct protein forms are produced from alternatively spliced bicistronic glutamic acid decarboxylase mRNAs during development. Mol. Cell. Biol. 1994;14:7535–7545. doi: 10.1128/mcb.14.11.7535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Kozak M. New ways of initiating translation in eukaryotes? Mol. Cell. Biol. 2001;21:1899–1907. doi: 10.1128/MCB.21.6.1899-1907.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Fütterer J, Potrykus I, Valles-Brau M.P, Dasgupta I, Hull R, Hohn T. Splicing in a plant pararetrovirus. Virology. 1994;198:663–670. doi: 10.1006/viro.1994.1078. [DOI] [PubMed] [Google Scholar]
  • 155.Kozak M. Primer extension analysis of eukaryotic ribosome mRNA complexes. Nucleic Acids Res. 1998;26:4853–4859. doi: 10.1093/nar/26.21.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Dixon L.K, Hohn T. Initiation of translation of the cauliflower mosaic virus genome from a polycistronic mRNA: evidence from deletion mutagenesis. EMBO J. 1984;3:2731–2736. doi: 10.1002/j.1460-2075.1984.tb02203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Gronenborn B. The molecular biology of cauliflower mosaic virus and its application as plant vector. In: Hohn T, Schell J, editors. Plant DNA Infections Agents. Spring-Verlag; Vienna: 1987. pp. 1–29. [Google Scholar]
  • 158.Gowda S, Wu F.C, Scholthof H.B, Shepherd R.J. 2nd Edition. Vol. 86. 1989. Gene VI of figwort mosaic virus (caulimo virus group) functions in posttranscriptional expression of genes on the full length RNA transcript; pp. 9203–9207. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Gowda S, Wu F.C, Scholthof H.B, Shepherd R.J. Gene VI of figwort mosaic virus activates expression of internal cistrons of the full-length polycistronic transcript. In: Pirone T.P, Shaw J.G, editors. Viral Genes and Plant Pathogenesis. Springer-Verlag; New York: 1990. pp. 79–88. [Google Scholar]
  • 160.Scholthof H.B, Gowda S, Wu F.C, Shepherd R.J. The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are transactivated by the product of gene VI. J. Virol. 1992;66:3131–3139. doi: 10.1128/jvi.66.5.3131-3139.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Maiti I.B, Richins R.D, Shepherd R.J. Gene expression regulated by gene VI of caulimovirus: transactivation of downstream genes of transcripts by gene VI of peanut chlorotic streak virus in transgenic tobacco. Virus Res. 1998;57:113–124. doi: 10.1016/s0168-1702(98)00088-4. [DOI] [PubMed] [Google Scholar]
  • 162.Sha Y.S, Broglio E.P, Cannon J.F, Schoelz J.E. 2nd Edition. Vol. 92. 1995. Expression of a plant viral polycistronic mRNA in yeast, Saccharomyces cerivisiae, mediated by a plant virus translation transactivator; pp. 8911–8915. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Zijlstra C, Holm T. Cauliflower mosaic virus gene VI controls translation from dicistronic expression units in transgenic arabidopsis plants. Plant Cell. 1992;4:1471–1484. doi: 10.1105/tpc.4.12.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Balás E. Diseases symptoms in transgenic tobacco induced by integrated gene VI of cauliflower mosaic virus. Virus Genes. 1990;3:205–211. doi: 10.1007/BF00393180. [DOI] [PubMed] [Google Scholar]
  • 165.Baughman G.A, Jacobs J.D, Howell S.H. 2nd Edition. Vol. 85. 1988. Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants; pp. 733–737. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Goldberg K.B, Kiernan J.M, Shepherd R.J. A disease syndrome associated with expression of gene VI of caulimovirus may be a non host reaction. Mol. Plant Microbe Interact. 1991;4:182–189. [Google Scholar]
  • 167.Takahashi H, Shimamoto K, Ehara Y. Cauliflower mosaic virus gene VI causes growth suppression, development of necrotic spots and expression of defence-related genes in transgenic tobacco plants. Mol. Gen. Genet. 1989;216:188–194. [Google Scholar]
  • 168.Zijlstra C, Schiirer-Hernandez N, Gal S, Hohn T. Arabidopsis thaliana expressing the Cauliflower Mosaic Virus ORF VI transgene has a late flowering phenotype. Virus Genes. 1996;13:5–17. doi: 10.1007/BF00576974. [DOI] [PubMed] [Google Scholar]
  • 169.Scholthof H.B, Wu F.C, Gowda S, Shepherd R.J. Regulation of caulimovirus gene expression and the involvement of cis-acting elements on both viral transcripts. Virology. 1992;190:403–412. doi: 10.1016/0042-6822(92)91226-k. [DOI] [PubMed] [Google Scholar]
  • 170.Driesen M, Benito-Moreno R.-M, Hohn T, Futterer J. Transcription from the CaMV 198 promoter and autocatalysis of translation from CaMV RNA. Virology. 1993;195:203–210. doi: 10.1006/viro.1993.1361. [DOI] [PubMed] [Google Scholar]
  • 171.Furusawa I, Yamaoka N, Okuno T, Yamamoto M, Kohno M, Kunoh H. Infection of turnip brassica-rapa oultivar perviribis protoplasts with cauliflower mosaic virus. J. Gen. Virol. 1980;48:431–435. [Google Scholar]
  • 172.Kitajima E.W, Lauritis J.A, Swift H. Fine structure of zinnial leaf tissues infected with dahlia mosaic virus. Virology. 1969;39:240–249. doi: 10.1016/0042-6822(69)90044-0. [DOI] [PubMed] [Google Scholar]
  • 173.Lawson R.H, Hearon S.S. Ultrastructure of carnation etched ring virus-infected Saponaria vaccaria and Dianthus caryophyllus. J. Ultrastruct. Res. 1974;48:201–215. doi: 10.1016/s0022-5320(74)80077-8. [DOI] [PubMed] [Google Scholar]
  • 174.Givord L, Xiong C, Giband M, Koenig I, Hohn T, Lebeurier G, Hirth L. A second cauliflower mosaic virus gene product influences the structure of the viral inclusion body. EMBO J. 1984;3:1423–1427. doi: 10.1002/j.1460-2075.1984.tb01987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Martinez-Izquierdo J, Futterer J, Hohn T. Protein encoded by ORFI of cauliflower mosaic virus is part of the viral inclusion body. Virology. 1987;160:527–530. doi: 10.1016/0042-6822(87)90032-8. [DOI] [PubMed] [Google Scholar]
  • 176.De Zoeten G.A, Penswick J.R, Horisberger M.A, Ahl P, Schultze M, Hohn T. The expression, localization, and effect of a human interferon in plants. Virology. 1989;172:213–222. doi: 10.1016/0042-6822(89)90123-2. [DOI] [PubMed] [Google Scholar]
  • 177.Rothnie H.M, Chapdelaine Y, Hohn T. Rararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv. Virus Res. 1994;44:1–67. doi: 10.1016/s0065-3527(08)60327-9. [DOI] [PubMed] [Google Scholar]
  • 178.Himmelbach A, Chapdelaine Y, Hohn T. Interaction between Cauliflower mosaic virus inclusion bodyprotein and capsid protein implications forviral assembly. Virology. 1996;217:147–157. doi: 10.1006/viro.1996.0102. [DOI] [PubMed] [Google Scholar]
  • 179.Kobayashi K, Tsuge S, Nakayashiki H, Mise K, Furusawa I. Requirement of cauliflower mosaic virus open reading frame VI product for viral gene expression and multiplication in turnip protoplasts. Microbiol. Immunol. 1998;42:377–386. doi: 10.1111/j.1348-0421.1998.tb02298.x. [DOI] [PubMed] [Google Scholar]
  • 180.de Tapia M, Himmelbach A, Hohn T. Molecular dissection of the cauliflower mosaic virus translational transactivator. EMBO J. 1993;12:3305–3314. doi: 10.1002/j.1460-2075.1993.tb06000.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Broglio E.P. Mutational analysis of cauliflower mosaic virus gene VI: changes in host range, symptoms, and discovery of transactivation-positive, noninfectious mutants. Mol. Plant Microbe Interact. 1995;8:755–760. doi: 10.1094/mpmi-8-0755. [DOI] [PubMed] [Google Scholar]
  • 182.Park H.-S, Himmelbach A, Browning K, Hohn T, Ryabova L.A. A plant viral “reinitiation” factor interacts with the host translational machinery. Cell. 2001;106:723–733. doi: 10.1016/s0092-8674(01)00487-1. [DOI] [PubMed] [Google Scholar]
  • 183.Leh V, Yot P, Keller M. The cauliflower mosaic virus translational transactivator interacts with the 60S ribosomal subunit protein L 18 of Arabidopsis thaliana. Virology. 2000;266:1–7. doi: 10.1006/viro.1999.0073. [DOI] [PubMed] [Google Scholar]
  • 184.Hatakeyama T, Kaufmann F, Schroeter B, Hatakeyama T. Primary structures of five ribosomal proteins from the archaebacterium. Halobacterium marismortui and their structural relationship to eubacterial and eukaryotic ribosomal proteins. Eur. J. Biochem. 1989;185:685–693. doi: 10.1111/j.1432-1033.1989.tb15166.x. [DOI] [PubMed] [Google Scholar]
  • 185.Ban N, Nissen P, Hansen J, Moore P.B, Steitz T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000;289:905–920. doi: 10.1126/science.289.5481.905. [DOI] [PubMed] [Google Scholar]
  • 186.Marion M.J, Marion C. Localization of ribosomal proteins on the surface of mammalian 60S ribosomal subunits by means of immobilized enzymes. Correlation with chemical crosslinking data. Biochem. Biophys. Res. Commun. 1987;149:1077–1083. doi: 10.1016/0006-291x(87)90518-3. [DOI] [PubMed] [Google Scholar]
  • 187.Baronas-Lowell D.M, Warner J.R. Ribosomal protein L30 is dispensable in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 1990;10:5235–5243. doi: 10.1128/mcb.10.10.5235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Cerritelli S.M, Fedoroff O.Y, Reid B.R, Crouch R.J. A common 40 amino acid motif in eukaryotic RNases H-1 and caulimovirus ORF VI proteins binds to duplex RNAs. Nucleic Acids Res. 1998;26:1834–1840. doi: 10.1093/nar/26.7.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Srivastava S, Verschoor A, Frank J. Eukaryotic initiation factor 3 does not prevent association through physical blockage of the ribosomal subunit-subunit interface. J. Mol. Biol. 1992;226:301–304. doi: 10.1016/0022-2836(92)90946-h. [DOI] [PubMed] [Google Scholar]
  • 190.Asano K, Clayton J, Shalev A, Hinnebusch A.G. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev. 1992;14:2534–2546. doi: 10.1101/gad.831800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Vornlocher H.P, Hanachi P, Ribeiro S, Hershey J.W. A 110-Wodalton subunit of translation initiation factor eIF3 and an associated 135-kilodalton protein are encoded by the Saccharomyces cerevisiae TIF32 and TIF31 genes. J. Biol. Chem. 1999;274:16802–16812. doi: 10.1074/jbc.274.24.16802. [DOI] [PubMed] [Google Scholar]
  • 192.Nassal M, Schaller H. Hepatitis B virus replication. Trends Microbiol. 1993;1:221–228. doi: 10.1016/0966-842x(93)90136-f. [DOI] [PubMed] [Google Scholar]

Articles from Progress in Nucleic Acid Research and Molecular Biology are provided here courtesy of Elsevier

RESOURCES