Abstract
Three-dimensional structures of a native simian and reassortant rotavirus have been determined by electron cryomicroscopy and computer image processing. The structural features of the native virus confirm that the hemagglutinin spike is a dimer of VP4, substantiated by in vivo radiolabeling studies. Exchange of native VP4 with a bovine strain equivalent results in a poorly infectious reassortant. No VP4 spikes are detected in the three-dimensional reconstruction of the reassortant. The difference map between the two structures reveals a novel large globular domain of VP4 buried within the virion that interacts extensively with the intermediate shell protein, VP6. Our results suggest that assembly of VP4 precedes that of VP7, the major outer shell protein, and that VP4 may play an important role in the receptor recognition and budding process through the rough endoplasmic reticulum during virus maturation.
References
- Au K.S., Chan W.K., Estes M.K. Vol. 90. 1988. Rotavirus morphogenesis involves an endoplasmic reticulum transmembrane glycoprotein; pp. 257–267. (UCLA Symp. Mol. Cell. Biol.). [Google Scholar]
- Au K.-S., Mattion N.M., Estes M.K. A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28. Virology. 1993;194:665–673. doi: 10.1006/viro.1993.1306. [DOI] [PubMed] [Google Scholar]
- Baker T.S., Newcomb W.W., Booy F.P., Brown J.C., Stevern A.C. Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. J. Virol. 1990;64:563–573. doi: 10.1128/jvi.64.2.563-573.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bass D.M., Mackow E.R., Greenberg H.B. Identification and partial characterization of a rhesus rotavirus binding glycoprotein on murine enterocytes. Virology. 1991;183:602–610. doi: 10.1016/0042-6822(91)90989-o. [DOI] [PubMed] [Google Scholar]
- Bassel-Duby R., Nibert M.K., Homcy C.J., Fields B.N., Sawutz D.G. Evidence that the sigma 1 protein of reovirus serotype 3 is a multimer. J. Virol. 1987;61:1834–1841. doi: 10.1128/jvi.61.6.1834-1841.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burns J.W., Chen D., Estes M.K., Ramig R.F. Biological and immunological characterization of a simian rotavirus SA11 variant with an altered genome segment 4. Virology. 1989;169:427–435. doi: 10.1016/0042-6822(89)90168-2. [DOI] [PubMed] [Google Scholar]
- Chen D., Burns J.W., Estes M.K., Ramig R.F. Vol. 86. 1989. Phenotypes of rotavirus reassortants depend upon the recipient genetic background; pp. 3743–3747. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen D., Estes M.K., Ramig R.F. Specific interactions between rotavirus outer capsid proteins VP4 and VP7 determine expression of a cross-reactive, neutralizing VP4-specific epitope. J. Virol. 1992;66:432–439. doi: 10.1128/jvi.66.1.432-439.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen D.Y., Ramig R.F. Determinants of rotavirus stability and density during CsCl purification. Virology. 1992;186:228–237. doi: 10.1016/0042-6822(92)90077-3. [DOI] [PubMed] [Google Scholar]
- Crowther R.A. Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Phil. Trans. R. Soc. Lond. (B) 1971;261:221–230. doi: 10.1098/rstb.1971.0054. [DOI] [PubMed] [Google Scholar]
- Dubochet J., Adrian M., Chang J.J., Homo J.C., Lepault J., McDowall A.W., Schultz P. Cryo-electron microscopy of vitrified specimens. Quart. Rev. Biophys. 1988;21:129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
- Endres M.J., Jacoby J.R., Janssen R.S., Gonzalez-Scarano F., Nathanson N. The large viral RNA segment of California serogroup bunyaviruses encodes the large viral protein. J. Gen. Virol. 1989;70:223–228. doi: 10.1099/0022-1317-70-1-223. [DOI] [PubMed] [Google Scholar]
- Endres M.J., Griot C., Gonzalez-Scarano F., Nathanson N. Neuroattenuation of an avirulent bunyavirus variant maps to the L RNA segment. J. Virol. 1991;65:5465–5470. doi: 10.1128/jvi.65.10.5465-5470.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson H.P., Klug A. The Fourier transform of an electron micrograph: effects of defocussing and aberrations, and implications for the use of underfocus contrast enhancement. Phil. Trans. R. Soc. Lond. (B) 1971;261:105–118. [Google Scholar]
- Espejo R.T., Lopez S., Arias C.F. Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. J. Virol. 1981;37:156–160. doi: 10.1128/jvi.37.1.156-160.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estes M.K. Rotaviruses and their replication. In: Fields B.N., editor. Virology. Raven Press; New York: 1990. pp. 1329–1352. [Google Scholar]
- Estes M.K., Cohen J. Rotavirus gene structure and function. Microbiol. Rev. 1989;53:410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estes M.K., Graham D.Y., Mason B.B. Proteolytic enhancement of rotavirus infectivity molecular mechanisms. J. Virol. 1981;39:879–888. doi: 10.1128/jvi.39.3.879-888.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estes M.K., Palmer E.L., Obijeski J.F. Rotaviruses: a review. Curr. Topics Microbiol. Immunol. 1983;105:123–184. doi: 10.1007/978-3-642-69159-1_3. [DOI] [PubMed] [Google Scholar]
- Fraser R.D., Furlong D.B., Trus B.L., Nibert M.L., Fields B.N., Stevens A.C. Molecular structure of the cell attachment protein of reovirus correlation of computer-processed electron micrographs with sequence-based predictions. J. Virol. 1990;64:2990–3000. doi: 10.1128/jvi.64.6.2990-3000.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller S.D. The T = 4 envelope of Sindbis virus is organized by interactions with a complementary T = 3 capsid. Cell. 1987;48:923–934. doi: 10.1016/0092-8674(87)90701-x. [DOI] [PubMed] [Google Scholar]
- Hall C.E. McGraw Hill; New York: 1966. Introduction to Electron Microscopy. [Google Scholar]
- Hirst G.K. Vol. 27. 1962. Genetic recombination with Newcastle disease virus, poliovirus, and influenza virus; pp. 303–308. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
- Hogue B.G., Kienzle T.E., Brian D.A. Synthesis and processing of the bovine enteric coronavirus hemagglutinin protein. J. Gen. Virol. 1989;70:345–352. doi: 10.1099/0022-1317-70-2-345. [DOI] [PubMed] [Google Scholar]
- Jeng T.W., Talmon Y., Chiu W. Containment system for the preparation of vitrified-hydrated virus specimens. J. Electron Microsc. Tech. 1988;8:343–348. doi: 10.1002/jemt.1060080402. [DOI] [PubMed] [Google Scholar]
- Kalica A.R., Flores J., Greenberg H.B. Identification of the rotaviral gene that codes for the hemagglutinin and protease-enhanced plaque formation. Virology. 1983;125:194–205. doi: 10.1016/0042-6822(83)90073-9. [DOI] [PubMed] [Google Scholar]
- Kaljot K.T., Shaw R.D., Rubin D.H., Greenberg H.B. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J. Virol. 1988;62:1136–1144. doi: 10.1128/jvi.62.4.1136-1144.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapikian A.Z., Chanock R.M. Rotaviruses. In: Fields B.N., editor. Virology. Raven Press; New York: 1990. pp. 1353–1404. [Google Scholar]
- Labbe M., Charpilenne A., Crawford S.E., Estes M.K., Cohen J. Expression of rotavirus VP2 produces empty corelike particles. J. Virol. 1991;65:2946–2952. doi: 10.1128/jvi.65.6.2946-2952.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laver W.G., Thompson S.D., Murti K.G., Portner A. Crystallization of Sendai virus HN protein complexed with monoclonal antibody Fab fragments. Virology. 1989;171:291–293. doi: 10.1016/0042-6822(89)90541-2. [DOI] [PubMed] [Google Scholar]
- Lee P.W.K., Hayes E.C., Joklik W.K. Protein sigma 1 is the reovirus cell attachment protein. Virology. 1981;108:156–163. doi: 10.1016/0042-6822(81)90535-3. [DOI] [PubMed] [Google Scholar]
- Leone G., Duncan R., Lee P.W. Trimerization of the reovirus cell attachment protein (sigma 1) induces conformational changes in sigma 1 necessary for its cell-binding function. Virology. 1991;184:758–761. doi: 10.1016/0042-6822(91)90447-j. [DOI] [PubMed] [Google Scholar]
- Liu M., Offit P.A., Estes M.K. Identification of the simian rotavirus SA11 genome segment 3 product. Virology. 1988;163:26–32. doi: 10.1016/0042-6822(88)90230-9. [DOI] [PubMed] [Google Scholar]
- Maass D.R., Atkinson P.H. Rotavirus proteins VP7, NS28, and VP4 form oligomeric structres. J. Virol. 1990;64:2632–2641. doi: 10.1128/jvi.64.6.2632-2641.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattion N.M., Estes M.K. Sequence of a rotavirus gene 4 associated with unique biological properties. Arch. Virol. 1991;120:109–113. doi: 10.1007/BF01310953. [DOI] [PubMed] [Google Scholar]
- Nibert M.L., Dermody T.S., Fields B.N. Structure of the reovirus cell-attachment protein a model for the domain organization of sigma 1. J. Virol. 1990;64:2976–2989. doi: 10.1128/jvi.64.6.2976-2989.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Offit P., Blavat G., Greenberg H.B., Clark H.F. Molecular basis of rotavirus virulence role of gene segment 4. J. Virol. 1986;57:46–49. doi: 10.1128/jvi.57.1.46-49.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pereira H.G., Azeredo R.S., Fialho A.M., Vidal M.N.P. Genomic heterogeneity of simian rotavirus SA11. J. Gen. Virol. 1984;65:815–818. doi: 10.1099/0022-1317-65-4-815. [DOI] [PubMed] [Google Scholar]
- Prasad B.V.V., Chiu W. Structure of rotavirus. Curr. Topics Microbiol. Immunol. 1993 doi: 10.1007/978-3-642-78256-5_2. in press. [DOI] [PubMed] [Google Scholar]
- Prasad B.V.V., Wang G.J., Clerx J.P.M., Chiu W. Three-dimensional structure of rotavirus. J. Mol. Biol. 1988;199:269–275. doi: 10.1016/0022-2836(88)90313-0. [DOI] [PubMed] [Google Scholar]
- Prasad B.V.V., Burns J.W., Marietta E., Estes M.K., Chiu W. Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature. 1990;343:476–479. doi: 10.1038/343476a0. [DOI] [PubMed] [Google Scholar]
- Prasad B.V.V., Yamaguchi S., Roy P. Three-dimensional structure of single-shelled bluetongue virus. J. Virol. 1992;66:2135–2142. doi: 10.1128/jvi.66.4.2135-2142.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad B.V.V., Prevelige P.E., Marietta E., Chen R.O., Thomas D., King J., Chiu W. Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. J. Mol. Biol. 1993;231:65–74. doi: 10.1006/jmbi.1993.1257. [DOI] [PubMed] [Google Scholar]
- Ramig R.F., Ward R.L. Genomic segment reassortment in rotavirus and other Reoviridae. Adv. Virus Res. 1991;39:164–207. doi: 10.1016/s0065-3527(08)60795-2. [DOI] [PubMed] [Google Scholar]
- Ritchey M.B., Palese P., Schulman J.L. Mapping of the influenza virus genome. III. Identification of genes coding for nucleoprotein, membrane protein, and nonstructural protein. J. Virol. 1976;20:307–313. doi: 10.1128/jvi.20.1.307-313.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruggeri F.M., Greenberg H.B. Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J. Virol. 1991;65:2211–2219. doi: 10.1128/jvi.65.5.2211-2219.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M.F., Langmore J.P. Quantitation of molecular densities by cryo-electron microscopy. J. Mol. Biol. 1992;226:763–774. doi: 10.1016/0022-2836(92)90631-s. [DOI] [PubMed] [Google Scholar]
- Stirzaker S.C., Whitfield P.L., Christie D.L., Bellamy A.R., Both G.W. Processing of rotavirus glycoprotein VP7: implications for the retention of the protein in the endoplasmic reticulum. J. Cell Biol. 1987;105:2897–2903. doi: 10.1083/jcb.105.6.2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strong J.E., Leone G., Duncan R., Sharma R.K., Lee P.W. Biochemical and biophysical characterization of the reovirus cell attachment protein sigma 1: evidence that it is a homotrimer. Virology. 1991;184:23–32. doi: 10.1016/0042-6822(91)90818-V. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyoshima C., Unwin P.N.T. Contrast transfer for frozen-hydrated specimens: determination from pairs of defocused images. Ultramicroscopy. 1988;25:279–291. doi: 10.1016/0304-3991(88)90003-4. [DOI] [PubMed] [Google Scholar]
- Weiner H.L., Ramig R.F., Mustoe T.A., Fields B.N. Identification of the gene coding for the hemagglutinin of reovirus. Virology. 1978;86:581–584. doi: 10.1016/0042-6822(78)90099-5. [DOI] [PubMed] [Google Scholar]
- Wiley D.C., Skehel J.J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
- Yeager M., Dryden K.A., Olson N.H., Greenberg H.B., Baker T.S. Three-dimensional structure of rhesus rotavirus by cryo-electron microscopy and image reconstruction. J. Cell Biol. 1990;110:2133–2144. doi: 10.1083/jcb.110.6.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeung M.C., Gill M.J., Alibhai S.S., Shahrabadi M.S., Lee P.W.K. Purification and characterization of the reovirus cell attachment protein sigma 1. Virology. 1987;156:377–385. doi: 10.1016/0042-6822(87)90417-x. [DOI] [PubMed] [Google Scholar]