Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jul 20;80(1):51–60. doi: 10.1016/0092-8674(95)90450-6

Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme

Senya Matsufuji ∗,, Tamiko Matsufuji , Youichi Miyazaki , Yasuko Murakami , John F Atkins , Raymond F Gesteland ∗,, Shin-ichi Hayashi
PMCID: PMC7133313  PMID: 7813017

Abstract

Rat antizyme gene expression requires programmed, ribosomal frameshifting. A novel autoregulatory mechanism enables modulation of frameshifting according to the cellular concentration of polyamines. Antizyme binds to, and destabilizes, ornithine decarboxylase, a key enzyme in polyamine synthesis. Rapid degradation ensues, thus completing a regulatory circuit. In vitro experiments with a fusion construct using reticulocyte lysates demonstrate polyamine-dependent expression with a frameshift efficiency of 19% at the optimal concentration of spermidine. The frameshift is +1 and occurs at the codon just preceding the terminator of the initiating frame. Both the termination codon of the initiating frame and a pseudoknot downstream in the mRNA have a stimulatory effect. The shift site sequence, UCC-UGA-U, is not similar to other known frameshift sites. The mechanism does not seem to involve re-pairing of peptidyl-tRNA in the new frame but rather reading or occlusion of a fourth base.

References

  1. Ahlquist P, Luckow V, Kaesberg P. Complete nucleotide sequence of brome mosaic virus RNA3. J. Mol. Biol. 1981;153:23–38. doi: 10.1016/0022-2836(81)90524-6. [DOI] [PubMed] [Google Scholar]
  2. Atkins J.F, Gesteland R.F. Discontinuous triplet decoding with, or without, re-pairing by peptidyi tRNA. In: Sö11 D, RajBhandary U.L, editors. tRNA: Structure, Biosynthesis and Function. American Society for Microbiology; Washington, D. C: 1995. pp. 471–490. [Google Scholar]
  3. Atkins J.F, Lewis J.B, Anderson C.W, Gesteland R.F. Enhanced differential synthesis of proteins in a mammalian cell-free system by addition of polyamines. J. Biol. Chem. 1975;250:5688–5695. [PubMed] [Google Scholar]
  4. Atkins J.F, Weiss R.B, Gesteland R.F. Ribosome gymnastics-degree of difficulty 9.5, style 10.0. Cell. 1990;62:413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Balasundaram D, Dinman J.D, Wickner R.B, Tabor C.W, Tabor H. Vol. 91. 1994. Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae; pp. 172–176. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brault V, Miller W.A. Vol. 89. 1992. Transitional frameshifting mediated by a viral sequence in plantcells; pp. 2262–2266. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brierley I, Digard P, Inglis S.C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chamorro M, Parkin N, Varmus H.E. Vol. 89. 1992. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA; pp. 713–717. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Craigen W.J, Caskey C.T. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature. 1986;322:273–275. doi: 10.1038/322273a0. [DOI] [PubMed] [Google Scholar]
  10. Curran J.F, Yarus M. Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J. Mol. Biol. 1988;203:75–83. doi: 10.1016/0022-2836(88)90092-7. [DOI] [PubMed] [Google Scholar]
  11. Farabaugh P.J, Zhao H, Vimaladithan A. A novel programed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage. Cell. 1993;74:93–103. doi: 10.1016/0092-8674(93)90297-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fong W.F, Heller J.S, Canellakis E.S. The appearance of an ornithine decarboxylase inhibitory protein upon the addition of putrescine to cell cultures. Biochim. Biophys. Acta. 1976;428:456–465. doi: 10.1016/0304-4165(76)90054-4. [DOI] [PubMed] [Google Scholar]
  13. Gesteland R.F, Weiss R.B, Atkins J.F. Recoding: reprogrammed genetic decoding. Science. 1992;257:1640–1641. doi: 10.1126/science.1529352. [DOI] [PubMed] [Google Scholar]
  14. Goldberg A.L, St.John A.C. Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu. Rev. Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  15. Görlach M, Hermann M, Schwemmle M, Hilse K. Binding of globin mRNA, β-globin mRNA segments and RNA homopolymers by immobilized protein of polysomal globin messenger ribonucleoprotein. Eur. J. Biochem. 1989;184:589–596. doi: 10.1111/j.1432-1033.1989.tb15054.x. [DOI] [PubMed] [Google Scholar]
  16. Hayashi S. Multiple mechanisms for the regulation of mammalian ornithine decarboxylase. In: Hayashi S, editor. Ornithine Decarboxylase: Biology, Enzymology, and Molecular Genetics. Pergamon Press; New York: 1989. pp. 35–45. [Google Scholar]
  17. Hayashi S, Canellakis E.S. Ornithine decarboxylase antizymes. In: Hayashi S, editor. Ornithine Decarboxylase: Biology, Enzymology, and Molecular Genetics. Pergamon Press; New York: 1989. pp. 47–58. [Google Scholar]
  18. Heider J, Baron C, Böck A. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 1992;11:3759–3766. doi: 10.1002/j.1460-2075.1992.tb05461.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Higuchi R, Krummel B, Saiki R.K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucl. Acids Res. 1988;16:7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ichiba T, Matsufuji S, Miyazaki Y, Murakami Y, Tanaka K, Ichihere A, Hayashi S. Functional regions of ornithine decarboxylase antizyme. Biochem. Biophys. Res. Commun. 1994;200:1721–1727. doi: 10.1006/bbrc.1994.1651. [DOI] [PubMed] [Google Scholar]
  21. Janda M, French R, Ahlquist P. High efficiency T7 polymerase synthesis of infectious RNA from cloned brome mosaic virus cDNA and effects of 5′ extensions on transcript infectivity. Virology. 1987;158:259–262. doi: 10.1016/0042-6822(87)90265-0. [DOI] [PubMed] [Google Scholar]
  22. Kameji T, Pegg A.E. Inhibition of translation of mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase by polyamines. J. Biol. Chem. 1987;262:2427–2430. [PubMed] [Google Scholar]
  23. Kitani T, Fujisawa H. Purification and some properties of a protein inhibitor (antizyme) of ornithine decarboxylase from rat liver. J. Biol. Chem. 1984;259:10036–10040. [PubMed] [Google Scholar]
  24. Li X, Coffino P. Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol. Cell. Biol. 1993;13:2377–2383. doi: 10.1128/mcb.13.4.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Li X, Coffino P. Distinct domains of antizyme required for binding and proteolysis of ornithine decarboxylase. Mol. Cell. Biol. 1994;14:87–92. doi: 10.1128/mcb.14.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matsufuji S, Kanamoto R, Murakami Y, Hayashi S. Monoclonal antibody studies on the properties and regulation of murine ornithine decarboxylase antizymes. J. Biochem. 1990;107:87–91. doi: 10.1093/oxfordjournals.jbchem.a123018. [DOI] [PubMed] [Google Scholar]
  27. Matsufuji S, Miyazaki Y, Kanamoto R, Kameji T, Murakami Y, Baby T.G, Fujita K, Ohno T, Hayashi S. Analyses of ornithine decarboxylase antizyme mRNA with a cDNA cloned from rat liver. J. Biochem. 1990;108:365–371. doi: 10.1093/oxfordjournals.jbchem.a123207. [DOI] [PubMed] [Google Scholar]
  28. Mitchell J.L.A, Judd G.G, Bareyal-Leyser A, Ling S.Y. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem. J. 1994;299:19–22. doi: 10.1042/bj2990019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miyazaki Y, Matsufuji S, Hayashi S. Cloning and characterization of a rat gene encoding ornithine decarboxylase antizyme. Gene. 1992;113:191–197. doi: 10.1016/0378-1119(92)90395-6. [DOI] [PubMed] [Google Scholar]
  30. Murakami Y, Hayashi S. Role of antizyme in degradation of ornithine decarboxylase in HTC cells. Biochem. J. 1985;226:893–896. doi: 10.1042/bj2260893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Murakami Y, Fujita K, Kameji T, Hayashi S. Accumulation of ornithine decarboxylase-antizyme complex in HMOA cells. Biochem. J. 1985;225:689–697. doi: 10.1042/bj2250689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Murakami Y, Matsufuji S, Miyazaki Y, Hayashi S. Destabilization of ornithine decarboxylase by transfected antizyme gene expression in hepatoma tissue culture cells. J. Biol. Chem. 1992;267:13138–13141. [PubMed] [Google Scholar]
  33. Murakami Y, Tanaka K, Matsufuji S, Miyazaki Y, Hayashi S. Antizyme, a protein induced by polyamines, accelerates the degradation of ornithine decarboxylase in Chinese-hamster ovarycell extracts. Biochem. J. 1992;283:661–664. doi: 10.1042/bj2830661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature. 1992;360:597–599. doi: 10.1038/360597a0. [DOI] [PubMed] [Google Scholar]
  35. Pegg A.E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 1986;234:249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pleij C.W.A, Rietveld K, Bosch L. A new principle of RNA folding based on pseudoknotting. Nucl. Acids Res. 1985;13:1717–1731. doi: 10.1093/nar/13.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rom E, Kahane C. Vol. 91. 1994. Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting; pp. 3959–3963. (Proc. Natl. Acad. Sci. USA). Correction: Proc. Natl. Acad. Sci. USA 91, 9195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Russell D.H, Snyder S.H. Amine synthesis in regenerating rat liver: extremely rapid turnover of ornithine decarboxylase. Mol. Pharmacol. 1969;5:253–262. [PubMed] [Google Scholar]
  39. Scheffner M, Werness B.A, Huibregtse J.M, Levine A.J, Howley P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–1136. doi: 10.1016/0092-8674(90)90409-8. [DOI] [PubMed] [Google Scholar]
  40. Schena M, Picard D, Yamamoto K.R. Vectors for constitutive and inducible gene expression in yeast. Meth. Enzymol. 1991;194:389–398. doi: 10.1016/0076-6879(91)94029-c. [DOI] [PubMed] [Google Scholar]
  41. Suzuki T, He Y, Kashiwagi K, Murakami Y, Hayashi S, Igarashi K. Vol. 91. 1994. Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells; pp. 8930–8934. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tabor C.W, Tabor H. Polyamines. Annu. Rev. Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  43. ten Dam E.B, Pleij C.W.A, Bosch L. RNA.pseudoknots: translational frameshifting and readthrough on viral RNAs. Vir. Genes. 1990;4:121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tokunaga F, Goto T, Koide T, Murakami Y, Hayashi S, Tamura T, Tanaka K, Ichihara A. ATP-and antizyme-dependent endoproteolysis of ornithine decarboxylase to oligopeptides by the 26S proteasome. J. Biol. Chem. 1994;269:17382–17385. [PubMed] [Google Scholar]
  45. Weiss R.B, Dunn D.M, Atkins J.F, Gesteland R.F. Vol. 52. 1987. Slippery runs, shifty stops, backward steps, and forward hops: -2, -1, +1, +2, +5 and +6 ribosomal frameshifting; pp. 687–693. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  46. Weiss R.B, Dunn D.M, Atkins J.F, Gesteland R.F. Ribosomal frameshifting from −2 to +50 nucleotides. Prog. Nucl. Acid Res. Mol. Biol. 1990;39:159–183. doi: 10.1016/s0079-6603(08)60626-1. [DOI] [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES