Abstract
The human invariant chain (Iγ) of class II histocompatibility antigens spans the membrane of the endoplasmic reticulum once. It exposes a small amino-terminal domain on the cytoplasmic side and a carboxyterminal, glycosylated domain on the exoplasmic side of the membrane. When the exoplasmic domain of Iγ is replaced by the cytoplasmic protein chloramphenicol acetyltransferase (CAT), CAT becomes the exoplasmic, glycosylated domain of the resulting membrane protein IγCAT∗. Deletion of the hydrophilic cytoplasmic domain from IγCAT gives rise to a secreted protein from which an amino-terminal segment is cleaved, most likely by signal peptidase. We conclude that the membrane-spanning region of Iγ contains a signal sequence in its amino-terminal half and that hydrophilic residues at the amino-terminal end of a signal sequence can determine cleavage by signal peptidase.
References
- Abrahamsen L., Moks T., Nilsson B., Hellman U., Uhlen M. Analysis of signals for secretion in the staphylococcal protein A gene. EMBO J. 1985;4:3901–3906. doi: 10.1002/j.1460-2075.1985.tb04164.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams G.A., Rose J.K. Structural requirements for a membrane-spanning domain for protein anchoring and cell surface transport. Cell. 1985;41:1007–1015. doi: 10.1016/s0092-8674(85)80081-7. [DOI] [PubMed] [Google Scholar]
- Anderson D.J., Mostov K.E., Blobel G. Vol. 80. 1983. Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5; pp. 7249–7253. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bause E. Structural requirements of N-glycosylation of proteins. Biochem. J. 1983;209:331–336. doi: 10.1042/bj2090331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blobel G., Dobberstein B. Transfer of proteins across membranes. J. Cell Biol. 1975;67:852–862. doi: 10.1083/jcb.67.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bos T.J., Davis A.R., Nayak D.P. Vol. 81. 1984. NH2-terminal hydrophobic region of influenza virus neuraminidase provides the signal function in translocation; pp. 2327–2331. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiacchia K.B., Drickamer K. Direct evidence for the transmembrane orientation of the hepatic glycoprotein receptors. J. Biol. Chem. 1984;259:15440–15446. [PubMed] [Google Scholar]
- Claesson L., Larhammar D., Rask L., Peterson P.A. Vol. 80. 1983. cDNA clone for the human invariant chain of class II histocompatibility antigens and its implications for the protein structure; pp. 7395–7399. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cutler D.F., Melancon P., Garoff H. Mutants of the membrane binding domain of Semliki Forest virus E2 protein: II. Topology and membrane binding. J. Cell Biol. 1986;102:902–910. doi: 10.1083/jcb.102.3.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobberstein B., Garoff H., Warren G., Robinson P.J. Cell-free synthesis and membrane insertion of mouse H-2Dd histocompatibility antigen and β2-microglobulin. Cell. 1979;17:759–769. doi: 10.1016/0092-8674(79)90316-7. [DOI] [PubMed] [Google Scholar]
- Dobberstein B., Lipp J., Lauer W., Signer P. Biosynthesis and intracellular transport of la antigens. In: Abraham K., Eikhom T.S., Pyrme J.F., editors. Protein Synthesis. Human Press Inc.,; Clifton, New Jersey: 1983. pp. 131–142. [Google Scholar]
- Engelman D.M., Steitz T.A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981;23:411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
- Evans E.A., Gilmore R., Blobel G. Vol. 83. 1986. Purification of microsomal signal peptidase as a complex; pp. 581–585. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiki Y., Hubbard A.L., Fowler S., Lazarow P.B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell Biol. 1982;93:97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmore R., Walter P., Blobel G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 1982;95:470–477. doi: 10.1083/jcb.95.2.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gough N.M., Metcalf D., Gough J., Grail D., Dunn A.R. Structure and expression of the mRNA for murine granulocyte-macrophage colony stimulating factor. EMBO J. 1985;4:645–653. doi: 10.1002/j.1460-2075.1985.tb03678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland E.C., Leung J.O., Drickamer K. Vol. 81. 1984. Rat liver asialoglycoprotein receptor lacks a cleavable NH2-terminal signal sequence; pp. 7338–7342. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hortsch M., Meyer D.I. Pushing the signal hypothesis: what are the limits? Biol. Cell. 1984;52:1–8. doi: 10.1111/j.1768-322x.1985.tb00319.x. [DOI] [PubMed] [Google Scholar]
- Inouye S., Wang S., Sekizawa J., Halegoua S., Inouye M. Vol. 74. 1977. Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane; pp. 1004–1008. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson R.C., Blobel G. Vol. 74. 1977. Post-translational cleavage of presecretory proteins with an extract of rough microsomes from dog pancreas containing signal peptidase activity; pp. 5598–5602. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes and organelles. Microbiol. Rev. 1983;47:1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lau J.T.Y., Welply J.K., Shenbagamurthi P., Naider F., Lennarz W.J. Substrate recognition by oligosaccharyl transferase. Inhibition of cotranslational glycosylation by acceptor peptidesJ. Biol. Chem. 1983;258:15255–15260. [PubMed] [Google Scholar]
- Lingappa V.R., Katz F.N., Lodish H.F., Blobel G. A signal sequence for the insertion of a transmembrane glycoprotein. Similarities to the signals of secretory proteins in primary structure and functionJ. Biol. Chem. 1978;253:8667–8670. [PubMed] [Google Scholar]
- Lipp J., Dobberstein B. Signal recognition particle-dependent membrane insertion of mouse invariant chain: a membrane spanning protein with a cytoplasmically exposed amino-terminus. J. Cell Biol. 1986;102:2169–2175. doi: 10.1083/jcb.102.6.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long E.O. In search of a function for the invariant chain associated with la antigens. Surv. Immunol. Res. 1985;4:27–34. doi: 10.1007/BF02918583. [DOI] [PubMed] [Google Scholar]
- Lively M.O., Walsh K.A. Hen oviduct signal peptidase is an intergral membrane protein. J. Biol. Chem. 1983;258:9488–9495. [PubMed] [Google Scholar]
- Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
- Markoff L., Lin B.-C., Sveda M.M., Lai C.-J. Glycosylation and surface expression of the influenza virus neuraminidase requires the N-terminal hydrophobic region. Mol. Cell. Biol. 1984;4:8–16. doi: 10.1128/mcb.4.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer D.I., Krause E., Dobberstein B. Secretory protein translocation across membranes—the role of the “docking protein”. Nature. 1982;297:647–650. doi: 10.1038/297647a0. [DOI] [PubMed] [Google Scholar]
- Rapoport T.A., Wiedman M. Application of the signal hypothesis to the incorporation of integral membrane proteins. In: Bronner F., editor. Vol. 24. Academic Press, Inc.,; New York: 1985. pp. 1–63. (Current Topics in Membranes and Transport). [Google Scholar]
- Rottier P., Armstrong J., Meyer D.I. Signal recognition particle-dependent insertion of coronavirus E1, and intracellular membrane glycoprotein. J. Biol. Chem. 1985;260:4648–4652. doi: 10.1016/S0021-9258(18)89119-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider C., Owen H.J., Banville D., Williams J.G. Primary structure of human transferrin receptor deduced from the mRNA sequence. Nature. 1984;311:675–678. doi: 10.1038/311675b0. [DOI] [PubMed] [Google Scholar]
- Spiess M., Lodish H.F. An internal signal sequence: the asialoglycoprotein receptor membrane anchor. Cell. 1986;44:177–185. doi: 10.1016/0092-8674(86)90496-4. [DOI] [PubMed] [Google Scholar]
- Stanley K.K., Luzio J.P. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 1984;3:1429–1434. doi: 10.1002/j.1460-2075.1984.tb01988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strubin M., Mach B., Long E.O. The complete sequence of the mRNA for the HLA-DR associated invariant chain reveals a polypeptide with an unusual transmembrane polarity. EMBO J. 1984;3:869–872. doi: 10.1002/j.1460-2075.1984.tb01898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stueber D., Ibrahimi I., Cutler D., Dobberstein B., Bujard H. A novel in vitro transcription-translation system: accurate and efficient synthesis of single proteins from cloned DNA sequences. EMBO J. 1984;3:3143–3148. doi: 10.1002/j.1460-2075.1984.tb02271.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 1983;133:17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Structural and thermodynamic aspects of the transfer of proteins into and across membranes. In: Bronner F., editor. Vol. 24. Academic Press, Inc.,; New York: 1985. pp. 151–179. (Current Topics in Membranes and Transport). [Google Scholar]
- Walter P., Blobel G. Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 1981;91:557–561. doi: 10.1083/jcb.91.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter P., Ibrahimi I., Blobel G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in vitro assembled polysomes synthesizing secretory protein. J. Cell Biol. 1981;91:545–550. doi: 10.1083/jcb.91.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter P., Gilmore R., Blobel G. Protein translocation across the endoplasmic reticulum. Cell. 1984;38:5–8. doi: 10.1016/0092-8674(84)90520-8. [DOI] [PubMed] [Google Scholar]
- Wickner W.T., Lodish H.F. Multiple mechanisms of protein insertion into and across membranes. Science. 1985;230:400–407. doi: 10.1126/science.4048938. [DOI] [PubMed] [Google Scholar]
- Yost C.S., Hedgpeth J., Lingappa V.R. A stop transfer sequence confers predictable transmembrane orientation to a previously secreted protein in cell-free systems. Cell. 1983;34:759–766. doi: 10.1016/0092-8674(83)90532-9. [DOI] [PubMed] [Google Scholar]
- Zuninga M.C., Hood L.E. Clonal variation in cell surface display of an H-2 protein lacking a cytoplasmic tail. J. Cell Biol. 1986;102:1–10. doi: 10.1083/jcb.102.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]