Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 14;68(5):829–840. doi: 10.1016/0092-8674(92)90027-A

The Golgi complex: In vitro veritas?

Ira Mellman , Kai Simons
PMCID: PMC7133332  PMID: 1547485

The content is available as a PDF (2.8 MB).

References

  1. Achstetter T., Franzusoff A., Field C., Scheckman R. SEC7 encodes an unusual, high molecular weight protein required for membrane traffic from the yeast Golgi apparatus. J. Biol. Chem. 1988;263:11711–11717. [PubMed] [Google Scholar]
  2. Allan V.J., Kreis T.E. A microtubule-binding protein associated with membranes of the Golgi apparatus. Cell Biol. 1986;103:2229–2239. doi: 10.1083/jcb.103.6.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson R.G.W., Pathak R.K. Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell. 1985;40:635–643. doi: 10.1016/0092-8674(85)90212-0. [DOI] [PubMed] [Google Scholar]
  4. Balch W.E., Dunphy W.G., Braell W.A., Rothman J.E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984;39:405–416. doi: 10.1016/0092-8674(84)90019-9. [DOI] [PubMed] [Google Scholar]
  5. Bankaitis V.A., Aitken J.R., Cleves A.E., Dowhan W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature. 1990;347:561–562. doi: 10.1038/347561a0. [DOI] [PubMed] [Google Scholar]
  6. Bennett M., Wandinger-Ness A., Simons K. Release of putative exocytic transport vesicles from perforated MDCK cells. EMBO J. 1988;7:4075–4085. doi: 10.1002/j.1460-2075.1988.tb03301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bergmann J.E., Singer S.J. Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese hamster ovary cells. J. Cell Biol. 1983;97:1777–1787. doi: 10.1083/jcb.97.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bonatti S., Migliaccio G., Simons K. Palmitylation of viral membrane glycoproteins takes place after exit from the endoplasmic reticulum. J. Biol. Chem. 1989;264:12590–12595. [PubMed] [Google Scholar]
  9. Braell W.A., Balch W.E., Dobbertin D.C., Rothman J.E. The glycoprotein that is transported between successive compartments of the Golgi in a cell-free system resides in stacks of cisternae. Cell. 1984;39:511–524. doi: 10.1016/0092-8674(84)90458-6. [DOI] [PubMed] [Google Scholar]
  10. Brewer C.B., Roth M.G. A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza virus hemagglutinin. J. Cell Biol. 1991;114:413–421. doi: 10.1083/jcb.114.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Burke B., Gerace L. A cell free system to study reassembly of the nuclear envelope at the end of mitosis. Cell. 1986;44:639–652. doi: 10.1016/0092-8674(86)90273-4. [DOI] [PubMed] [Google Scholar]
  12. Chavrier P., Parton R.G., Hauri H.-P., Simons K., Zerial M. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell. 1990;62:317–329. doi: 10.1016/0092-8674(90)90369-p. [DOI] [PubMed] [Google Scholar]
  13. Chege N.W., Pfeffer S.R. Compartmentation of the Golgi complex: brefeldin-A distinguishes trans-Golgi cisternae from the trans-Golgi network. J. Cell Biol. 1990;111:893–899. doi: 10.1083/jcb.111.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clary D.O., Griff I.C., Rothman J.E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell. 1990;61:709–721. doi: 10.1016/0092-8674(90)90482-t. [DOI] [PubMed] [Google Scholar]
  15. Cleves A.E., McGee T.P., Whitters E.A., Champion K.M., Aitken J.R., Dowhan W., Goebl M., Bankaitis V.A. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell. 1991;64:789–800. doi: 10.1016/0092-8674(91)90508-v. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Colley K.J., Lee E.U., Adler B., Browne J.K., Paulson J.C. Conversion of a Golgi apparatus sialytransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J. Biol. Chem. 1989;257:14011–14017. [PubMed] [Google Scholar]
  17. Cooper M.S., Cornell-Bell A.H., Chernjavsky A., Dani J.W., Smith S.J. Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-Golgi elements into a reticulum. Cell. 1990;61:135–145. doi: 10.1016/0092-8674(90)90221-y. [DOI] [PubMed] [Google Scholar]
  18. Cummings R.D., Kornfeld S. The distribution of repeating [Ga/β1,4GlcNAcβ1,3] sequences in asparatine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. J. Biol. Chem. 1984;259:6253–6260. [PubMed] [Google Scholar]
  19. Dabora S.L., Sheetz M.P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell. 1988;54:27–35. doi: 10.1016/0092-8674(88)90176-6. [DOI] [PubMed] [Google Scholar]
  20. Dean N., Pelham H.R.B. Recycling of proteins from the Golgi compartment to the ER in yeast. J. Cell Biol. 1990;111:369–377. doi: 10.1083/jcb.111.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Deutscher S.L., Nuwayhid N., Stanley P., Briles E.I.B., Hirschberg C.B. Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell. 1984;39:295–299. doi: 10.1016/0092-8674(84)90007-2. [DOI] [PubMed] [Google Scholar]
  22. Donaldson J.G., Lippincott-Schwartz J., Klausner R.D. Guanine nucleotides modulate the effects of brefeldin A in semipermeable cells: regulation of the association of a 110-kD peripheral membrane protein with the Golgi apparatus. J. Cell Biol. 1991;112:579–588. doi: 10.1083/jcb.112.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Donaldson J.G., Kahn R.A., Lippincott-Schwartz J., Klausner R.D. Binding of ARF and β-COP to Golgi membranes: possible regulation by a trimeric G protein. Science. 1991;254:1197–1199. doi: 10.1126/science.1957170. [DOI] [PubMed] [Google Scholar]
  24. Dotti C.G., Simons K. Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell. 1990;62:63–72. doi: 10.1016/0092-8674(90)90240-f. [DOI] [PubMed] [Google Scholar]
  25. Duden R., Allan V., Kreis T. Involvement of β-COP in membrane traffic through the Golgi complex. Trends Cell Biol. 1991;1:14–19. doi: 10.1016/0962-8924(91)90064-g. [DOI] [PubMed] [Google Scholar]
  26. Duden R., Griffiths G., Frank R., Argos P., Kreis T.E. β-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to β-adaptin. Cell. 1991;64:649–665. doi: 10.1016/0092-8674(91)90248-w. [DOI] [PubMed] [Google Scholar]
  27. Duncan J.R., Kornfeld S. Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus. J. Cell Biol. 1988;106:617–628. doi: 10.1083/jcb.106.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Dunphy W.G., Rothman J.E. Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. J. Cell Biol. 1983;97:270–275. doi: 10.1083/jcb.97.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Dunphy W.G., Brands R., Rothman J.E. Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack. Cell. 1985;40:463–472. doi: 10.1016/0092-8674(85)90161-8. [DOI] [PubMed] [Google Scholar]
  30. Farquhar M.G., Palade G.E. The Golgi apparatus (complex)-(1954–1981)-from artifact to center stage. J. Cell Biol. 1981;91:77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Fries E., Rothman J.E. Transient activity of Golgi-like membranes as donors of vesicular stomatitis viral glycoprotein in vitro. J. Cell Biol. 1981;90:697–704. doi: 10.1083/jcb.90.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Geuze H.J., Morré D.J. Trans-Golgi reticulum. J. Electron Microsc. Tech. 1991;17:24–34. doi: 10.1002/jemt.1060170105. [DOI] [PubMed] [Google Scholar]
  33. Goud B., Zahraoui A., Tavitian A., Saraste J. Small GTP-binding protein associated with Golgi cisternae. Nature. 1990;345:553–556. doi: 10.1038/345553a0. [DOI] [PubMed] [Google Scholar]
  34. Goldberg D.E., Kornfeld S. Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J. Biol. Chem. 1983;258:3159–3165. [PubMed] [Google Scholar]
  35. Graham T.R., Emr S.D. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J. Cell Biol. 1991;114:207–218. doi: 10.1083/jcb.114.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Griffiths G., Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986;234:438–443. doi: 10.1126/science.2945253. [DOI] [PubMed] [Google Scholar]
  37. Griffiths G., Warren G., Quinn P., Mathieu-Costello O., Hoppeler H. Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies. J. Cell Biol. 1984;98:2133–2141. doi: 10.1083/jcb.98.6.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Griffiths G., Pfeiffer S., Simons K., Matlin K. Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J. Cell Biol. 1985;101:949–964. doi: 10.1083/jcb.101.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Griffiths G., Fuller S.D., Back R., Hollinshead M., Pfeiffer S., Simons K. The dynamic nature of the Golgi complex. J. Cell Biol. 1989;108:277–297. doi: 10.1083/jcb.108.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Groesch M.E., Ruohola H., Bacon R., Rossi G., Ferro-Novick S. Isolation of a functional vesicular intermediate that mediates ER to Golgi transport in yeast. J. Cell Biol. 1990;111:45–53. doi: 10.1083/jcb.111.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Gruenberg J., Howell K.E. Membrane traffic in endocytosis: insights from cell-free assays. Annu. Rev. Cell Biol. 1989;5:453–481. doi: 10.1146/annurev.cb.05.110189.002321. [DOI] [PubMed] [Google Scholar]
  42. Helms J.B., Karrenbauer A., Wirtz K.W.A., Rothman J.E., Wieland F.T. Reconstitution of steps in the constitutive secretory pathway in permeabilized cells. J. Biol. Chem. 1990;265:20027–20032. [PubMed] [Google Scholar]
  43. Hermo L., Rambourg A., Clermont Y. Three-dimensional architecture of the cortical region of the Golgi-apparatus in rat spermatids. Am. J. Anat. 1980;157:357–373. doi: 10.1002/aja.1001570405. [DOI] [PubMed] [Google Scholar]
  44. Ho W.C., Allan V.J., van Meer G., Berger E.G., Kreis T.E. Reclustering of scattered Golgi elements occurs along microtubules. Eur. J. Cell Biol. 1989;48:250–263. [PubMed] [Google Scholar]
  45. Hopkins C.R., Gibson A., Shipman M., Miller K. Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature. 1990;346:335–339. doi: 10.1038/346335a0. [DOI] [PubMed] [Google Scholar]
  46. Howe C.L., Granger B.L., Hull M., Green S.A., Gabel C.A., Helenius A., Mellman I. Vol. 85. 1988. Derived protein sequence, oligosaccharides, and membrane insertion of the 120 kD lysosomal membrane protein (lgp 120): identification of a highly conserved family of lysosomal membrane glycoproteins; pp. 7577–7581. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hsu V.W., Yuan L.C., Nuchtern J.G., Lippincott-Schwartz J., Hammerling G.J., Klausner R.D. A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature. 1991;352:441–444. doi: 10.1038/352441a0. [DOI] [PubMed] [Google Scholar]
  48. Hunziker W., Harter C., Matter K., Mellman I. Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant. Cell. 1991;66:907–920. doi: 10.1016/0092-8674(91)90437-4. [DOI] [PubMed] [Google Scholar]
  49. Hunziker W., Whitney J.A., Mellman I. Selective inhibition of transcytosis by brefeldin A in MDCK cells. Cell. 1991;67:617–627. doi: 10.1016/0092-8674(91)90535-7. [DOI] [PubMed] [Google Scholar]
  50. Huttner W.B., Baeuerle P.A. Protein sulfation on tyrosine. Mod. Cell Biol. 1988;6:97–140. [Google Scholar]
  51. Huttner W.B., Tooze S.A. Biosynthetic protein transport in the secretory pathway. Curr. Opin. Cell Biol. 1989;1:648–654. doi: 10.1016/0955-0674(89)90029-x. [DOI] [PubMed] [Google Scholar]
  52. Johnson L.V., Walsh M.L., Chen L.B. Vol. 77. 1980. Localization of mitochondria in living cells with rhodamine 123; pp. 990–994. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kahn R.A. Fluoride is not an activator of the smaller (20–25 kDa) GTP-binding proteins. J. Biol. Chem. 1991;266:15595–15597. [PubMed] [Google Scholar]
  54. Karrenbauer A., Jeckel D., Just W., Birk R., Schmidt R.R., Rothman J.E., Wieland F.T. The rate of bulk flow from the Golgi to the plasma membrane. Cell. 1990;63:259–267. doi: 10.1016/0092-8674(90)90159-c. [DOI] [PubMed] [Google Scholar]
  55. Kelly R.B. Pathways of protein secretion in eukaryotes. Science. 1985;230:25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  56. Klausner R.D., Donaldson J.G., Lippincott-Schwartz J. Brefeldin A: cytosolic coat protein assembly, organelle structure, and membrane traffic. J. Cell Biol. 1992 doi: 10.1083/jcb.116.5.1071. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  58. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu. Rev. Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  59. Lee C., Chen L.B. Dynamic behavior of endoplasmic reticulum in living cells. Cell. 1988;54:37–46. doi: 10.1016/0092-8674(88)90177-8. [DOI] [PubMed] [Google Scholar]
  60. Lindsey J.D., Ellisman M.H. The neuronal endomembrane system. II. The multiple forms of the Golgi apparatus cis element. J. Neurosci. 1985;5:3124–3134. doi: 10.1523/JNEUROSCI.05-12-03124.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Lippincott-Schwartz J., Donaldson J.G., Schweizer A., Berger E.G., Hauri H.-P., Yuan L.C., Klausner R.D. Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell. 1990;60:821–836. doi: 10.1016/0092-8674(90)90096-w. [DOI] [PubMed] [Google Scholar]
  62. Lippincott-Schwartz J., Yuan L., Tipper C., Amherdt M., Orci L., Klausner R.D. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell. 1991;67:601–616. doi: 10.1016/0092-8674(91)90534-6. [DOI] [PubMed] [Google Scholar]
  63. Lodish H.F. Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi. J. Biol. Chem. 1988;263:2107–2110. [PubMed] [Google Scholar]
  64. Lodish H.F., Kong N., Snider M., Strous G.J.A.M. Hepatoma secretory proteins migrate from the rough endoplasmic reticulum to Golgi at characteristic rates. Nature. 1983;304:80–93. doi: 10.1038/304080a0. [DOI] [PubMed] [Google Scholar]
  65. Lopez L.C., Youakim A., Evans S.C., Shur B.D. Evidence for a molecular distinction between Golgi and cell surface forms of β1,4-galactosyltransferase. J. Biol. Chem. 1991;266:15984–15991. [PubMed] [Google Scholar]
  66. Lotti L., Porrisi M., Pascale M., Bonatti S. Immunocytochemical analysis of the transfer from the intermediate compartment to the Golgi complex of VSV G protein. J. Cell Biol. 1992 doi: 10.1083/jcb.118.1.43. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Lucocq J.M., Berger E.G., Warren G. Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway. J. Cell Biol. 1989;109:463–474. doi: 10.1083/jcb.109.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Machamer C.E., Mentone S.A., Rose J.K., Farquhar M.G. Vol. 87. 1990. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex; pp. 6944–6948. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Malhotra V., Serafini T., Orci L., Shepherd J.C., Rothman J.E. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell. 1989;58:329–336. doi: 10.1016/0092-8674(89)90847-7. [DOI] [PubMed] [Google Scholar]
  70. Marsh M., Griffiths G., Dean G.E., Mellman I., Helenius A. Vol. 83. 1986. Three dimensional structure of endosomes in BHK-21 cells; pp. 2899–2903. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Melkonian M., Becker B., Becker D. Scale formation in algae. J. Electron Microsc. Tech. 1991;17:165–178. doi: 10.1002/jemt.1060170205. [DOI] [PubMed] [Google Scholar]
  72. Misumi Y., Miki K., Takatsuki A., Tamura G., Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 1986;261:11398–11403. [PubMed] [Google Scholar]
  73. Munro S. Sequences within and adjacent to the transmembrane segment of α-2,6-sialyltransferase specify Golgi retention. EMBO J. 1991;10:3577–3588. doi: 10.1002/j.1460-2075.1991.tb04924.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Neefjes J.J., Verkerk J.M.H., Broxterman H.J.G., van der Marel G.A., van Boom J.H., Ploegh H.L. Recycling glycoproteins do not return to the cis-Golgi. J. Cell Biol. 1988;107:79–87. doi: 10.1083/jcb.107.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Nilsson T., Lucocq J.M., Mackay D., Warren G. The membrane spanning domain of β-1,4-galactosyltransferase specifies trans Golgi localization. EMBO J. 1991;10:3567–3575. doi: 10.1002/j.1460-2075.1991.tb04923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Orci L., Glick B.S., Rothman J.E. A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell. 1986;46:171–184. doi: 10.1016/0092-8674(86)90734-8. [DOI] [PubMed] [Google Scholar]
  77. Orci L., Malhotra V., Amherdt M., Serafini T., Rothman J.E. Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. Cell. 1989;56:357–368. doi: 10.1016/0092-8674(89)90239-0. [DOI] [PubMed] [Google Scholar]
  78. Orci L., Tagaya M., Amherdt M., Perrelet A., Donaldson J.G., Lippincott-Schwartz J., Klausner R.D., Rothman J.E. Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell. 1991;64:1183–1195. doi: 10.1016/0092-8674(91)90273-2. [DOI] [PubMed] [Google Scholar]
  79. Pagano R.E., Sepanski M.A., Martin O.C. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J. Cell Biol. 1989;109:2067–2079. doi: 10.1083/jcb.109.5.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Pagano R.E., Martin O.C., Kang H.C., Haugland R.P. A novel fluorescent ceramide analog for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 1991;113:1267–1279. doi: 10.1083/jcb.113.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Palade G.E. Intracellular aspects of the process of protein secretion. Science. 1975;189:347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  82. Pearse B.M.F., Robinson M.S. Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol. 1990;6:151–171. doi: 10.1146/annurev.cb.06.110190.001055. [DOI] [PubMed] [Google Scholar]
  83. Pelham H.R.B. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J. 1988;7:913–918. doi: 10.1002/j.1460-2075.1988.tb02896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Pelham H.R.B. Control of protein exit from the endoplasmic reticulum. Annu. Rev. Cell Biol. 1989;5:1–23. doi: 10.1146/annurev.cb.05.110189.000245. [DOI] [PubMed] [Google Scholar]
  85. Pelham H.R.B. Recycling of proteins between the endoplasmic reticulum and Golgi complex. Curr. Opin. Cell Biol. 1991;3:585–591. doi: 10.1016/0955-0674(91)90027-v. [DOI] [PubMed] [Google Scholar]
  86. Pfeffer S.R., Rothman J.E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
  87. Rambourg A., Clermont Y. Three-dimensional electron microscopy: structure of the Golgi apparatus. Eur. J. Cell Biol. 1990;51:189–200. [PubMed] [Google Scholar]
  88. Reaves B., Banting G. Perturbation of the morphology of the trans-Golgi network following brefeldin A treatment: redistribution of a TGN-specific integral membrane protein. TGN38. J. Cell Biol. 1992;116:85–94. doi: 10.1083/jcb.116.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Rexach M.F., Schekman R.W. Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles. J. Cell Biol. 1991;114:219–229. doi: 10.1083/jcb.114.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Rizzolo L.J., Kornfield R. Post-translational protein modification in the endoplasmic reticulum. Demonstration of fatty acylase and deoxymannoiirimycin-sensitive alpha-mannosidase activitiesJ. Biol. Chem. 1988;263:9520–9525. [PubMed] [Google Scholar]
  91. Roth J., Berger E.G. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in the trans-Golgi cisternae. J. Cell Biol. 1982;93:223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Roth J., Taatjes D.J., Lucocq J.M., Weinstein J., Paulson J.C. Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell. 1985;43:287–295. doi: 10.1016/0092-8674(85)90034-0. [DOI] [PubMed] [Google Scholar]
  93. Roth J., Taatjes D.J., Weinstein J., Paulson J.C., Greenwell P., Watkins W.M. Differential subcompartmentation of terminal glycosylation in the Golgi apparatus of intestinal absorptive and goblet cells. J. Biol. Chem. 1986;261:14307–14312. [PubMed] [Google Scholar]
  94. Rothman J.E., Orci L. Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. FASEB J. 1990;4:1460–1468. doi: 10.1096/fasebj.4.5.2407590. [DOI] [PubMed] [Google Scholar]
  95. Rothman J.E., Miller R.L., Urbani L.J. Intercompartmental transport in the Golgi complex is a dissociative process: facile transfer of membrane protein between two Golgi populations. J. Cell Biol. 1984;99:260–271. doi: 10.1083/jcb.99.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Rothman J.E., Urbani L.J., Brands R. Transport of protein between cytoplasmic membranes of fused cells: correspondence to processes reconstituted in a cell-free system. J. Cell Biol. 1984;99:248–259. doi: 10.1083/jcb.99.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Saraste J., Svensson K. Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci. 1991 doi: 10.1242/jcs.100.3.415. in press. [DOI] [PubMed] [Google Scholar]
  98. Saraste J., Palade G.E., Farquhar M.G. Antibodies to rat pancreas Golgi subfractions: identification of a 58-kD cis-Golgi protein. J. Cell Biol. 1987;105:2021–2029. doi: 10.1083/jcb.105.5.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Schwaninger R., Beckers C.J.M., Balch W.E. Sequential transport of protein between the endoplasmic reticulum and successive Golgi compartments in semi-intact cells. J. Biol. Chem. 1991;266:13055–13063. [PubMed] [Google Scholar]
  100. Schwartzmann G., Sandhoff K. Metabolism and intracellular transport of glycosphingolipids. Biochemistry. 1990;29:10865–10871. doi: 10.1021/bi00501a001. [DOI] [PubMed] [Google Scholar]
  101. Schweizer A., Fransen J.A.M., Bächi T., Ginsel L., Hauri H.-P. Identification, by a monoclonal antibody, of a 53 kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol. 1988;107:1643–1653. doi: 10.1083/jcb.107.5.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Schweizer A., Fransen J.A.M., Matter K., Kreis T.E., Ginsel L., Hauri H.-P. Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus. Eur. J. Cell Biol. 1990;53:185–196. [PubMed] [Google Scholar]
  103. Serafini T., Stenbeck G., Brecht A., Lottspeich F., Orci L., Rothman J.E., Wieland F.T. A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein β-adaptin. Nature. 1991;349:215–220. doi: 10.1038/349215a0. [DOI] [PubMed] [Google Scholar]
  104. Simons K., van Meer G. Lipid sorting in epithelial cells. J. Biochem. 1988;27:6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
  105. Slot J.W., Geuze H.J. Immunoelectron microscopic exploration of the Golgi complex. J. Histochem. Cytochem. 1983;31:1049–1056. doi: 10.1177/31.8.6863900. [DOI] [PubMed] [Google Scholar]
  106. Sossin W.S., Fisher J.M., Scheller R.H. Sorting within the regulated secretory pathway occurs in the trans-Golgi network. J. Cell Biol. 1990;110:1–12. doi: 10.1083/jcb.110.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Stearns T., Willingham M.C., Botstein D., Kahn R.A. Vol. 87. 1990. ADP-ribosylation factor is functionally and physically associated with the Golgi complex; pp. 1238–1242. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Swanson J., Bushnell A., Silverstein S.C. Vol. 84. 1987. Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules; pp. 1921–1925. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Swift A.M., Machamer C.E. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J. Cell Biol. 1991;115:19–30. doi: 10.1083/jcb.115.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Taatjes D.J., Roth J., Weinstein J., Paulson J.C. Post-Golgi apparatus localization and regional expression of rat intestinal sialyltransferase detected by immunoelectron microscopy with polypeptide epitope-purified antibody. J. Biol. Chem. 1988;263:6302–6309. [PubMed] [Google Scholar]
  111. Takatsuki A., Tamura G. Brefeldin A, a specific inhibitor of intracellular translocation of vesicular stomatitis virus G protein: intracellular accumulation of high mannose type G protein and inhibition of its cell surface expression. Agric. Biol. Chem. 1985;49:899–902. [Google Scholar]
  112. Thyberg J., Moskalewski S. Microtubules and the organization of the Golgi complex. Exp. Cell Res. 1985;159:1–16. doi: 10.1016/s0014-4827(85)80032-x. [DOI] [PubMed] [Google Scholar]
  113. Tooze J., Hollinshead M. Tubular endosomal networks in AtT20 and other cells. J. Cell Biol. 1991;115:635–653. doi: 10.1083/jcb.115.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Tooze J., Tooze S.A., Warren G. Replication of coronavirus MHV-A59 in sac(-) cells: determination of the first site of budding of progeny virions. Eur. J. Cell Biol. 1984;33:281–293. [PubMed] [Google Scholar]
  115. Tooze S., Tooze J., Warren G. Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J. Cell Biol. 1988;106:1475–1487. doi: 10.1083/jcb.106.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Ulmer J.B., Palade G.E. Effects of brefeldin A on the processing of viral envelope glycoproteins in murine erythroleukemia cells. J. Biol. Chem. 1991;266:9173–9179. [PubMed] [Google Scholar]
  117. van Meer G. Lipid traffic in animal cells. Annu. Rev. Cell Biol. 1989;5:247–275. doi: 10.1146/annurev.cb.05.110189.001335. [DOI] [PubMed] [Google Scholar]
  118. Wandinger-Ness A., Bennett M.K., Antony C., Simons K. Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells. J. Cell Biol. 1990;111:987–1000. doi: 10.1083/jcb.111.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Warren G. Signals and salvage sequences. Nature. 1987;327:17–18. doi: 10.1038/327017a0. [DOI] [PubMed] [Google Scholar]
  120. Weinstein J., de Souza-e-Silva U., Paulson J.C. Purification of a galβ1–4 GlcNAc α2–6 sialyltransferase and a galβ1–3(4) GlcNAc α2–3 sialyltransferase to homogeneity from rat liver. J. Biol. Chem. 1982;257:13835–13844. [PubMed] [Google Scholar]
  121. Wieland F.T., Gleason M.L., Serafini T.A., Rothman J.E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell. 1987;50:289–300. doi: 10.1016/0092-8674(87)90224-8. [DOI] [PubMed] [Google Scholar]
  122. Wilson D.W., Wilcox C.A., Flynn G.C., Chen E., Kuang W.-J., Henzel W.J., Block M.R., Ullrich A., Rothman J.E. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature. 1989;339:355–359. doi: 10.1038/339355a0. [DOI] [PubMed] [Google Scholar]
  123. Yamamoto K., Fahimi H.D. Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: evidence of interconnections between heterogeneous segments. J. Cell Biol. 1987;105:713–722. doi: 10.1083/jcb.105.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES