Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 30;62(1):117–126. doi: 10.1016/0092-8674(90)90245-A

A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60

Robert B Weiss , Wai Mun Huang , Diane M Dunn
PMCID: PMC7133334  PMID: 2163764

Abstract

Bacteriophage T4 DNA topoisomerase gene 60 contains a 50 nucleotide untranslated region within the coding sequence of its mRNA. Translational bypass of this sequence by elongating ribosomes has been postulated for the mode of synthesis of an 18 kd polypeptide specified by the split coding segments. Ribosome bypass of the untranslated region also occurs when a segment of gene 60 is fused to lacZ and expressed in E. coli. The efficiency of bypass in these gene 60-lacZ fusions approaches 100%. Here, mutations that delete, insert, or substitute nucleotides from gene 60-lacZ fusions are examined. Essential features necessary for high level gap bypass emerging from this analysis are a cis-acting nascent peptide sequence, a short duplication bordering the gap, and a stop codon contained in a stem-loop structure at the 5′ junction of the gap.

References

  1. Bernabeu C., Lake J.A. Vol. 79. 1982. Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain; pp. 3111–3115. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brierley I., Digard P., Inglis S.C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cigan A.M., Feng L., Donahue T.F. tRNAimet functions in directing the scanning ribosome to the start site of translation. Science. 1988;242:93–97. doi: 10.1126/science.3051379. [DOI] [PubMed] [Google Scholar]
  4. Curran J.F., Yarus M. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J. Mol. Biol. 1989;209:65–78. doi: 10.1016/0022-2836(89)90170-8. [DOI] [PubMed] [Google Scholar]
  5. Falahee M.B., Weiss R.B., O'Connor M., Doonan S., Gesteland R.F., Atkins J.F. Mutants of translational components that alter the reading frame by two steps foward or one step back. J. Biol. Chem. 1988;263:18099–18103. [PubMed] [Google Scholar]
  6. Gryczan T.J., Grandi G., Hahn J., Dubnau D. Conformational alteration of mRNA structure and the posttransciptional regulation of erythromycin-induced drug resistance. Nucl. Acids Res. 1980;8:6081–6097. doi: 10.1093/nar/8.24.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horinouchi S., Weisblum B. Vol. 77. 1980. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance; pp. 7079–7083. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang W.M., Ao S., Casjens S., Orlandi R., Zeikus R., Weiss R., Winge D., Fang M. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science. 1988;239:1005–1012. doi: 10.1126/science.2830666. [DOI] [PubMed] [Google Scholar]
  9. Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kang C., Cantor C.R. Structure of ribosome-bound messenger RNA as revealed by enzymic accessibility. J. Mol. Biol. 1985;181:241–251. doi: 10.1016/0022-2836(85)90088-9. [DOI] [PubMed] [Google Scholar]
  11. Kozak M., Shatkin A.J. Migration of 40 S ribosomal subunits on messenger RNA in the presence of edeine. J. Biol. Chem. 1978;253:6568–6577. [PubMed] [Google Scholar]
  12. Landick R., Yanofsky C. Transcription attenuation. In: Neidhardt F.C., editor. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society of Microbiology; Washington, D.C: 1988. p. 1276. [Google Scholar]
  13. Liu L., Liu C., Alberts B.M. T4 DNA topoisomerase: a new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication. Nature. 1979;281:456–461. doi: 10.1038/281456a0. [DOI] [PubMed] [Google Scholar]
  14. Miller J.H. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1972. Experiments in Molecular Genetics. [Google Scholar]
  15. Moazed D., Noller H.F. Interactions of antibiotics with functional sites in 16S rRNA. Nature. 1987;327:389–394. doi: 10.1038/327389a0. [DOI] [PubMed] [Google Scholar]
  16. Mufti S., Bernstein H. The DNA-delay mutants of bacteriophage T4. J. Virol. 1974;14:860–871. doi: 10.1128/jvi.14.4.860-871.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Connor M., Gesteland R.F., Atkins J.F. tRNA hopping: enhancement by an expanded anticodon. EMBO J. 1989;13:4315–4323. doi: 10.1002/j.1460-2075.1989.tb08618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith W.P., Tai P.-C., Davis B.D. Vol. 75. 1978. Interaction of secreted nascent chains with surrounding membrane in Bacillus subtilis; pp. 5922–5925. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stetler G., King G., Huang W.M. Vol. 76. 1979. T4 DNA-delay proteins, required for specific DNA replication, form a complex that has ATP-dependent DNA topoisomerase activity; pp. 3737–3741. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Szer W., Kurylo-Borowska Z. Effect of edeine on aminoacyl-tRNA binding to ribosomes and its relationship to ribosomal binding sites. Biochem. Biophys. Acta. 1970;224:477–486. doi: 10.1016/0005-2787(70)90580-0. [DOI] [PubMed] [Google Scholar]
  21. Tuerk C., Gauss P., Thermes C., Groebe D.R., Gayle M., Guild N., Stormo G., D'Aubenton-Carafa Y., Uhlenbeck O.C., Tinoco I., Brody E.N., Gold L. Vol. 85. 1988. CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes; pp. 1364–1368. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weiss R.B., Dunn D.M., Atkins J.F., Gesteland R.F. Vol. 52. 1987. Slippery runs, shifty stops, backward steps and foward hops: −2, −1, +1, +5 and +6 ribosomal frameshifting; pp. 687–693. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  23. Weiss R.B., Dunn D.M., Dahlberg A.E., Atkins J.F., Gesteland R.F. Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis. EMBO J. 1988;7:1503–1507. doi: 10.1002/j.1460-2075.1988.tb02969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolin S.L., Walter P. Ribosome pausing and stacking during translation of eukaryotic mRNA. EMBO J. 1988;7:3559–3569. doi: 10.1002/j.1460-2075.1988.tb03233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yen T.J., Machlin P.S., Cleveland D.W. Autoregulated instability of β tubulin mRNAs by recognition of the nascent amino terminus of β tubulin. Nature. 1988;334:580–584. doi: 10.1038/334580a0. [DOI] [PubMed] [Google Scholar]
  26. Yonath A., Wittman H.G. Crystallographic and imagery construction studies on ribosomal particles from bacterial sources. Meth. Enzymol. 1988;169:95–116. doi: 10.1016/s0076-6879(88)64037-7. [DOI] [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES