Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 May 7;55(3):447–458. doi: 10.1016/0092-8674(88)90031-1

Signals for ribosomal frameshifting in the rous sarcoma virus gag-pol region

Tyler Jacks ★,a, Hiten D Madhani , Frank R Masiarz , Harold E Varmus
PMCID: PMC7133365  PMID: 2846182

Abstract

The gag-pol protein of Rous sarcoma virus (RSV), the precursor to the enzymes responsible for reverse transcription and integration, is expressed from two genes that lie in different translational reading frames by ribosomal frameshifting. Here, we localize the site of frameshifting and show that the frameshifting reaction is mediated by slippage of two adjacent tRNAs by a single nucleotide in the 5′ direction. The gag terminator, which immediately follows the frameshift site, is not required for frameshifting. Other suspected retroviral frameshift sites mediate frameshifting when placed at the end of RSV gag. Mutations in RSV pol also affect synthesis of the gag-pol protein in vitro. The effects of these mutations best correlate with the potential to form an RNA stem-loop structure adjacent to the frameshift site. A short sequence of RSV RNA, 147 nucleotides in length, containing the frameshift site and stem-loop structure, is sufficient to direct frameshifting in a novel genetic context.

References

  1. Allison R., Johnston R.E., Dougherty W.G. The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for synthesis of a single polypeptide. Virology. 1986;154:9–20. doi: 10.1016/0042-6822(86)90425-3. [DOI] [PubMed] [Google Scholar]
  2. Brierley I., Boursnell M., Birns M., Bilmoria B., Block V., Brown T., Inglis S. An efficient ribosomal frameshifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chakrabarti L., Guyader M., Alizon M., Daniel M.D., Desrosiers R.C., Tiollais P., Sonigo P. Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature. 1987;328:543–547. doi: 10.1038/328543a0. [DOI] [PubMed] [Google Scholar]
  4. Chen E.Y., Seeburg P.H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985;4:165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  5. Clare J., Farabaugh P. Vol. 82. 1985. Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression; pp. 2829–2833. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Craigen W.J., Cook R.G., Tate W.P., Caskey C.T. Vol. 82. 1985. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2; pp. 3616–3620. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalgarno L., Rice C.M., Strauss J.H. Ross River virus 26S RNA: complete nucleotide sequence and deduced sequence of encoded structural proteins. Virology. 1983;129:170–187. doi: 10.1016/0042-6822(83)90404-x. [DOI] [PubMed] [Google Scholar]
  8. Dunn J.J., Studier F.W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 1983;166:477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
  9. Fox T.D., Weiss-Brummer B. Leaky +1 and −1 frameshift mutations at the same site in a yeast mitochondrial gene. Nature. 1980;288:60–63. doi: 10.1038/288060a0. [DOI] [PubMed] [Google Scholar]
  10. Garoff H., Frischauf A.M., Simons K., Lehrach H., Delius H. Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature. 1980;288:236–241. doi: 10.1038/288236a0. [DOI] [PubMed] [Google Scholar]
  11. Guyader M., Emerman M., Sonigo P., Claver F., Montagnier L., Alizon M. Genome organization and transcription of the human immunodeficiency virus type 2. Nature. 1987;326:662–669. doi: 10.1038/326662a0. [DOI] [PubMed] [Google Scholar]
  12. Hiramatsu K., Nishida J., Naito A., Yoshikura H. Molecular cloning of the closed circular provirus of human T cell leukemia virus type I: a new open reading frame in the gag-pol region. J. Gen. Virol. 1987;68:213–218. doi: 10.1099/0022-1317-68-1-213. [DOI] [PubMed] [Google Scholar]
  13. Hizi A., Henderson L.E., Copeland T.D., Sowden R.C., Hixson C.V., Oroszlan S. Vol. 84. 1987. Characterization of mouse mammary tumor virus gag-pol gene products and the ribosomal frameshift by protein sequencing; pp. 7041–7046. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacks T., Varmus H.E. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
  15. Jacks T., Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  16. Jacks T., Townsley K., Varmus H.E., Majors J. Vol. 84. 1987. Two efficient ribosomal frameshift events are required for synthesis of mouse mammary tumor virus gag-related polypeptides; pp. 4298–4302. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kozak M. How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell. 1978;15:1109–1123. doi: 10.1016/0092-8674(78)90039-9. [DOI] [PubMed] [Google Scholar]
  18. Kozak M. Bifunctional messenger RNAs in eukaryotes. Cell. 1986;47:481–483. doi: 10.1016/0092-8674(86)90609-4. [DOI] [PubMed] [Google Scholar]
  19. Kozak M. An analysis of 5′-noncoding regions from 699 vertebrate messenger RNAs. Nucl. Acids Res. 1987;15:8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lewis E.D., Chen S., Kumar A., Blanck G., Pollack R.E., Manley J.L. Vol. 80. 1983. A frameshift mutation affecting the carboxyl terminus of the simian virus 40 large tumor antigen results in a replication- and transformation-defective virus; pp. 7065–7069. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Madhani H.D., Jacks T., Varmus H.E. Signals for the expression of the HIV pol gene by ribosomal frameshifting. In: Franza R., Cullen B., Wong-Staal F., editors. The Control of HIV Gene Expression. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1988. pp. 119–125. [Google Scholar]
  22. Marlor R.L., Parkhurst S.M., Corces V.G. The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol. Cell. Biol. 1986;6:1129–1134. doi: 10.1128/mcb.6.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meitz J.A., Grossman Z., Lueders K.K., Kuff E.L. Nucleotide sequence of a complete mouse intracisternal A-particle genome: no relationship to known aspects of particle assembly and function. J. Virol. 1987;61:3020–3029. doi: 10.1128/jvi.61.10.3020-3029.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mellor J., Fulton S.M., Dobson M.J., Wilson W., Kingsman S.M., Kingsman A.J. A retrovirus-like strategy for expression of a fusion protein encoded by the yeast transposon Ty1. Nature. 1985;313:243–246. doi: 10.1038/313243a0. [DOI] [PubMed] [Google Scholar]
  25. Melton D.A., Krieg P.A., Rebagliati M.R., Maniatis T., Zinn K., Green M.R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucl. Acids Res. 1984;12:7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore R., Dixon M., Smith R., Peters G., Dickson C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J. Virol. 1987;61:480–490. doi: 10.1128/jvi.61.2.480-490.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nilsson B., Abrahmsen L., Uhlen M. Immobilization and purification of enzymes with staphylococcal protein A gene fusion vectors. EMBO J. 1985;4:1075–1080. doi: 10.1002/j.1460-2075.1985.tb03741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pelham H.R.B. Leaky UAG termination codon in tobacco mosaic virus RNA. Nature. 1978;272:469–471. doi: 10.1038/272469a0. [DOI] [PubMed] [Google Scholar]
  29. Pelham H.R.B. Translation of tobacco rattle virus RNAs in vitro: four proteins from three RNAs. Virology. 1979;97:256–265. doi: 10.1016/0042-6822(79)90337-4. [DOI] [PubMed] [Google Scholar]
  30. Pleij C.W.A., Rietveld K., Bosch L. A new principle of RNA folding based on pseudoknotting. Nucl. Acids Res. 1985;13:1717–1731. doi: 10.1093/nar/13.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Power M.D., Marx P.A., Bryant M.L., Gardner M.D., Barr P.J., Luciw P.A. Nucleotide sequence of SRV-1, a type D simian acquired immune deficiency syndrome retrovirus. Science. 1986;231:1567–1572. doi: 10.1126/science.3006247. [DOI] [PubMed] [Google Scholar]
  32. Puglisi J.D., Wyatt J.R., Tinoco I. A pseudoknotted RNA oligonucleotide. Nature. 1988;331:283–286. doi: 10.1038/331283a0. [DOI] [PubMed] [Google Scholar]
  33. Ratner L., Hazeltine W., Patarca R., Livak K.J., Starcich B., Josephs S.F., Doran E.R., Rafalski J.A., Whitehorn E.A., Baumeister K., Ivanoff L., Petteway S.R., Pearson M.L., Lautenberger J.A., Papas T.S., Ghrayeb J., Chang N.T., Gallo R.C., Wong-Staal F. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985;313:277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  34. Rice C.M., Strauss J.H. Vol. 78. 1981. Nucleotide sequence of the 26S mRNA of sindbis virus and deduced sequence of the encoded virus structural proteins; pp. 1062–1066. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rice N.R., Stephens R.M., Burny A., Gilden R.V. The gag and pol genes of bovine leukemia virus: nucleotide sequence and analysis. Virology. 1985;142:357–377. doi: 10.1016/0042-6822(85)90344-7. [DOI] [PubMed] [Google Scholar]
  36. Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y. Vol. 82. 1985. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses; pp. 677–681. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saigo K., Kugimiya W., Matsuo Y., Inouye S., Yoshioka K., Yuki S. Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature. 1984;312:659–661. doi: 10.1038/312659a0. [DOI] [PubMed] [Google Scholar]
  38. Sanchez-Pescador R., Power M.D., Barr P.J., Steimer K.S., Stempier M.M., Brown-Shimer S.L., Gee W.W., Renard A., Randolf A., Levy J.D., Dina D., Luciw P.A. Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2) Science. 1985;227:484–492. doi: 10.1126/science.2578227. [DOI] [PubMed] [Google Scholar]
  39. Schwartz D.E., Tizard R., Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983;32:853–869. doi: 10.1016/0092-8674(83)90071-5. [DOI] [PubMed] [Google Scholar]
  40. Seeger C., Ganem D., Varmus H.E. Nucleotide sequence of an infectious molecularly cloned genome of ground squirrel hepatitis virus. J. Virol. 1984;51:367–375. doi: 10.1128/jvi.51.2.367-375.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shimotohno K., Takahashi Y., Shimizu N., Gojobori T., Golde D.W., Chen I.S.Y., Miwa M., Sugimura T. Vol. 82. 1985. Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II: an open reading frame for the protease gene; pp. 3101–3105. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shinnick T.M., Lerner R.A., Sutcliffe J.G. Nucleotide sequence of Moloney murine leukemia virus. Nature. 1981;293:543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  43. Sonigo P., Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell. 1985;42:369–382. doi: 10.1016/s0092-8674(85)80132-x. [DOI] [PubMed] [Google Scholar]
  44. Sonigo P., Barker C., Hunter E., Wain-Hobson S. Nucleotide sequence of Mason-Pfizer monkey virus: an immunosuppressive D-type retrovirus. Cell. 1986;45:375–385. doi: 10.1016/0092-8674(86)90323-5. [DOI] [PubMed] [Google Scholar]
  45. Stephens R.M., Casey J.W., Rice N.R. Equine infectious anemia virus gag and pol genes: relatedness to visna and AIDS virus. Science. 1986;231:589–594. doi: 10.1126/science.3003905. [DOI] [PubMed] [Google Scholar]
  46. Uhlen M., Nilsson B., Guss B., Lindberg M., Gatenbeck S., Philipson L. Gene fusion vectors based on the gene for staphylococcal protein A. Gene. 1983;23:369–378. doi: 10.1016/0378-1119(83)90025-2. [DOI] [PubMed] [Google Scholar]
  47. Varmus H.E. Retroviruses. Science. 1988;240:1427–1435. doi: 10.1126/science.3287617. [DOI] [PubMed] [Google Scholar]
  48. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. Nucleotide sequence of the AIDS virus, LAV. Cell. 1985;40:9–17. doi: 10.1016/0092-8674(85)90303-4. [DOI] [PubMed] [Google Scholar]
  49. Weiss R.B., Teich N., Varmus H.E., Coffin J. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1982. RNA Tumor Viruses. [Google Scholar]
  50. Weiss R.B., Dunn D.M., Atkins J.F., Gesteland R.F. Vol. 52. 1987. Slippery runs, shifty stops, backward steps and forward hops: −2, −1, +5 and +6 ribosomal frameshifting; pp. 687–693. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  51. Weiss R.B., Dunn D.M., Dahlberg A.E., Atkins J.F., Gesteland R.F. Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J. 1988;7:1503–1507. doi: 10.1002/j.1460-2075.1988.tb02969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yoshinaka Y., Katoh I., Copeland T.D., Oroszlan S.J. Vol. 82. 1985. Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon; pp. 1618–1622. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yoshinaka Y., Katoh I., Copeland T.D., Oroszlan S.J. Translational readthrough of an amber termination codon during synthesis of feline leukemia virus protease. J. Virol. 1985;55:870–873. doi: 10.1128/jvi.55.3.870-873.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES