Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 28;38(3):721–729. doi: 10.1016/0092-8674(84)90267-8

Identification of a small rna containing the trypanosome spliced leader: A donor of shared 5′ sequences of trypanosomatid mRNAs?

Michael Milhausen 1, Richard G Nelson 1, Susan Sather 1, Murray Selkirk 1, Nina Agabian 1
PMCID: PMC7133438  PMID: 6091897

Abstract

The 35 nucleotide spliced leader (SL) sequence is found on the 5′ end of numerous trypanosome mRNAs, yet the tandemly organized reiteration units encoding this leader are not detectably linked to any of these structural genes. Here we report the presence of a class of discrete small SL RNA molecules that are derived from the genomic SL reiteration units of Trypanosoma brucei, Trypanosoma cruzi, and Leptomonas collosoma. These small SL RNAs are 135, 105, and 95 nucleotides, respectively, and contain a 5′-terminal SL or SL-like sequence. S1 nuclease analyses demonstrate that these small SL RNAs are transcribed from continuous sequence within the respective SL reiteration units. With the exception of the SL sequence and a concensus donor splice site immediately following it, these small RNAs are not well conserved. We suggest that the small SL RNAs may function as a donor of the SL sequence in an intermolecular process that places the SL at the 5′ terminus of many trypanosomatid mRNAs.

References

  1. Berget S.M. Are U4 small nuclear ribonucleoproteins involved in polyadenylation? Nature. 1984;309:179–181. doi: 10.1038/309179a0. [DOI] [PubMed] [Google Scholar]
  2. Bernards A., Delange T., Michiels P., Liu A., Huisman M., Borst P. Two modes of activation of a single surface antigen gene of Trypanosoma brucei. Cell. 1984;36:136–170. doi: 10.1016/0092-8674(84)90085-0. [DOI] [PubMed] [Google Scholar]
  3. Boothroyd J.C., Cross G.A.M. Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short identical exon at their 5′ end. Gene. 1982;20:281–289. doi: 10.1016/0378-1119(82)90046-4. [DOI] [PubMed] [Google Scholar]
  4. Campbell D.A., van Bree M.P., Boothroyd J.C. The 5′-limit of transposition and upstream barren region of a trypanosome VSG gene: tandem 76 base-pair repeats flanking (TAA)90. Nucl. Acids Res. 1984;12:2759–2773. doi: 10.1093/nar/12.6.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell D.A., Thornton D.A., Boothroyd J.C. The spliced-leader of a trypanosome mRNA exists as a short, discrete transcript indicating discontinuous transcription. Nature. 1984 in press. [Google Scholar]
  6. Childs G., Maxson R., Cohn R.H., Kedes L. Orphons: dispersed genetic elements derived from tandem repetitive genes of eucaryotes. Cell. 1981;23:651–663. doi: 10.1016/0092-8674(81)90428-1. [DOI] [PubMed] [Google Scholar]
  7. Cordingly J.S., Turner M.J. 6.5S RNA; preliminary characterization of small RNAs in Trypanosoma brucei. Mol. Biochem. Parasitol. 1980;1:91–96. doi: 10.1016/0166-6851(80)90003-1. [DOI] [PubMed] [Google Scholar]
  8. Delange T., Liu A., Van der Ploeg L., Borst P., Tromp M., Van Boom J. Tandem repetition of the 5′ mini-exon of variant surface glycoprotein genes: a multiple promoter for VSG gene transcription? Cell. 1983;34:891–900. doi: 10.1016/0092-8674(83)90546-9. [DOI] [PubMed] [Google Scholar]
  9. Delange T., Michels P.A.M., Veerman H.J.G., Cornelissen A.W.C.A., Borst P. Many trypanosome messenger RNAs share a common 5′ terminal sequence. Nucl. Acids Res. 1984;12:3777–3790. doi: 10.1093/nar/12.9.3777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Delange T., Berkvens T.M., Veerman H.J.G., Frasch A.C.C., Barry J.D., Borst P. Comparison of the genes coding for the common 5′ terminal sequence of messenger RNAs in three trypanosome species. Nucl. Acids Res. 1984;12:4431–4443. doi: 10.1093/nar/12.11.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dorfman D.M., Donelson J.E. Characterization of the 1.35 kilobase DNA repeat unit containing the conserved 35 nucleotides at the 5′-termini of variable surface glycoprotein mRNAs in Trypanosoma brucei. Nucl. Acids Res. 1984;12:4907–4920. doi: 10.1093/nar/12.12.4907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grabowski P.J., Padgett R.A., Sharp P.A. Messenger RNA splicing in vitro: an excised intervening sequence and a potential intermediate. Cell. 1984;37:415–427. doi: 10.1016/0092-8674(84)90372-6. [DOI] [PubMed] [Google Scholar]
  13. Gray M.W. Unusual patterning of ribonucleic acid components in the ribosome of Crithidia fasciculata, a trypanosomatid protozoa. Mol. Cell. Biol. 1981;1:347–357. doi: 10.1128/mcb.1.4.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krainer A.R., Mariatis J., Ruskin B., Green M.R. Normal and mutant human β-globin pre-mRNAs were faithfully and efficiently spliced in vitro. Cell. 1984;36:993–1005. doi: 10.1016/0092-8674(84)90049-7. [DOI] [PubMed] [Google Scholar]
  15. Krug R.M., Broni B.B., Bouloy M. Are the 5′ ends of influenza virus mRNAs synthesized in vivo donated by host mRNAs? Cell. 1979;18:329–334. doi: 10.1016/0092-8674(79)90052-7. [DOI] [PubMed] [Google Scholar]
  16. Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Vol. 81. 1984. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus; pp. 3626–3630. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lazzirini R.A., Keene J.D., Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981;26:145–154. doi: 10.1016/0092-8674(81)90298-1. [DOI] [PubMed] [Google Scholar]
  18. Lemer M.R., Bayle J.A., Mount S.M., Wolin S.L., Steitz J.A. Are snRNPs involved in splicing? Nature. 1980;283:220–224. doi: 10.1038/283220a0. [DOI] [PubMed] [Google Scholar]
  19. MacKay R.M., Gray M.W., Doolittle W.F. Nucleotide sequence of Crithidia fasciculata cytosol 5S ribosomal ribonucleic acid. Nucl. Acids Res. 1980;8:4911–4917. doi: 10.1093/nar/8.21.4911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Michiels F., Mathyssens G., Kronenberger P., Pays E., Dero B., Van Assel S., Darville M., Cravader A., Steinert M., Hamers R. Gene activation and re-expression of a Trypanosoma brucei variant surface glycoprotein. EMBO J. 1983;7:1185–1192. doi: 10.1002/j.1460-2075.1983.tb01565.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Milhausen M., Nelson R.G., Parsons M., Newport G., Stuart K., Agabian N. Molecular characterization of initial variants from the IsTat 1 serodeme of Trypanosoma brucei. Mol. Biochem. Parasitol. 1983;9:241–254. doi: 10.1016/0166-6851(83)90100-7. [DOI] [PubMed] [Google Scholar]
  22. Murphy W.J., Brentano S.T., Rice-Ficht A.C., Dorfman D.M., Donelson J.E. DNA rearrangement of the variable surface antigen genes of the trypanosomes. J. Protozool. 1984;31:65–73. doi: 10.1111/j.1550-7408.1984.tb04291.x. [DOI] [PubMed] [Google Scholar]
  23. Myler P., Nelson R.G., Agabian N., Stuart K. Two mechanisms of expression of a predominant variant antigen gene of Trypanosoma brucei. Nature. 1984;309:282–284. doi: 10.1038/309282a0. [DOI] [PubMed] [Google Scholar]
  24. Nelson R.G., Parsons M., Barr P., Stuart K., Selkirk M., Agabian N. Sequences homologous to the variant antigen mRNA spliced leader are located in tandem repeats and variable orphons in Trypanosoma brucei. Cell. 1983;34:901–909. doi: 10.1016/0092-8674(83)90547-0. [DOI] [PubMed] [Google Scholar]
  25. Nelson R.G., Parsons M., Selkirk M., Barr P., Agabian N. Sequences homologous to the variant antigen mRNA spliced leader in Trypanosomatidae which do not undergo antigenic variation. Nature. 1984;308:665–667. doi: 10.1038/308665a0. [DOI] [PubMed] [Google Scholar]
  26. Parsons M., Nelson R.G., Newport G., Milhausen M., Stuart K., Agabian N. Genomic organization of Trypanosoma brucei variant antigen gene families in sequential parasitemias. Mol. Biochem. Parasitol. 1983;9:255–269. doi: 10.1016/0166-6851(83)90101-9. [DOI] [PubMed] [Google Scholar]
  27. Parsons M., Nelson R.G., Watkins K., Agabian N. Trypanosome mRNAs share a common 5′ spliced leader sequence. Cell. 1984;38:309–316. doi: 10.1016/0092-8674(84)90552-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Parsons M., Nelson R.G., Agabian N. Antigenic variation in African trypanosomes: DNA rearrangements program immune evasion. Immun. Today. 1984;5:43–50. doi: 10.1016/0167-5699(84)90028-8. [DOI] [PubMed] [Google Scholar]
  29. Parsons M., Nelson R.G., Stuart K., Agabian N. Vol. 81. 1984. Variant antigen genes of Trypanosoma brucei: genomic alteration of a spliced leader orphon and retention of expression-linked copies during differentiation; pp. 684–688. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Plotch S.J., Bouloy M., Ulmanen I., Krug R.M. A unique cap (m7) (m GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell. 1981;23:847–858. doi: 10.1016/0092-8674(81)90449-9. [DOI] [PubMed] [Google Scholar]
  31. Rogers J., Wall R. Vol. 77. 1980. A mechanism for RNA splicing; pp. 1877–1879. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schnare M.N., Gray M.W. Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata. Nucl. Acids Res. 1982;10:2085–2092. doi: 10.1093/nar/10.6.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Simpson L., Simpson A.M. Kinetoplast RNA of Leishmania tarentolae. Cell. 1978;14:169–178. doi: 10.1016/0092-8674(78)90311-2. [DOI] [PubMed] [Google Scholar]
  34. Spaan W., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B., Siddell S.G. Corona virus mRNA synthesis involves fusion of non-contiguous sequences. Eur. Mol. Biol. J. 1983;2:1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Van der Ploeg L.H.T., Liu A.Y.C., Michels P.A.M., Delange T., Majumder H.K., Weber H., Veeneman G.H., Van Boom J. RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucl. Acids Res. 1982;10:3591–3604. doi: 10.1093/nar/10.12.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vickerman K. Antigenic variation in trypanosomes. Nature. 1978;273:613–617. doi: 10.1038/273613a0. [DOI] [PubMed] [Google Scholar]
  37. Zimmern D. Do viriods and RNA viruses derive from a system that exchanges genetic information between eukaryotic cells? Trends Biochem. Sci. 1982;7:205–207. [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES