Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 11;26(1):7–15. doi: 10.1016/0161-5890(89)90014-X

Antigenicity of the peplomer protein of infectious bronchitis virus

Johannes A Lenstra ∗,§, Johannes G Kusters , Guus Koch , Bernard AM van der Zeijst
PMCID: PMC7133629  PMID: 2467199

Abstract

To study the antigenic structure of the peplomer protein of the avian coronavirus infectious bronchitis virus, fragments from the peplomer gene were generated by restriction-enzyme cleavage or by limited DNase digestion and inserted in the Escherichia coli expression plasrnid pEX (Stanley and Luzio, 1984). The antigenicity of the expression products was tested using a number of polyclonal antisera and monoclonal antibodies.

The polyclonal antisera recognized different sets of epitopes in the 1162-residue sequence. The N-terminal region of one of the two subunits, S2, was recognized by all polyclonal sera and by two monoclonal antibodies. This clearly immunodominant region contains at least two adjacent or overlapping epitopes, one of which has been localized within 18 residues.

The epitopes found as antigenic pEX expression products do not coincide with the regions in the S1 subunit that have been found to contain hypervariable sequences. We suggest that these regions constitute conformation dependent neutralization epitopes that cannot be detected in the pEX system. The relevance of our finclings for vaccine development is discussed.

Abbreviations: ELISA, enzyme-linked immunosorbent assay; IBV, infectious bronchitis virus; MAb, monoclonal antibody; PBS, phosphate-buffered saline

References

  1. Atassi M.Z. Antigenic structures of proteins. Eur. J. Biochem. 1984;145:1–20. doi: 10.1111/j.1432-1033.1984.tb08516.x. [DOI] [PubMed] [Google Scholar]
  2. Berzofsky J.A. Intrinsic and extrinsic factors in protein antigenic structures. Science. 1985;229:932–940. doi: 10.1126/science.2410982. [DOI] [PubMed] [Google Scholar]
  3. Binns M.M., Boursnell M.E.G., Tomley F.M., Brown T.D.K. Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beaudette. J. Gen. Virol. 1986;67:2825–2831. doi: 10.1099/0022-1317-67-12-2825. [DOI] [PubMed] [Google Scholar]
  4. Blake M.S., Johnston K.H., Russell-Jones G.J., Gotschlich E.C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated antibodies on Western blots. Analyt. Biochem. 1984;136:175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  5. Cavanagh D. Coronavirus IBV: structural characterization of the spike protein. J. Gen Virol. 1983;64:1787–1791. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
  6. Cavanagh D., Darbyshire J.H., Davis P.J., Peters R.W. Induction of humoral neutralising and haemagglutination-inhibiting antibody by the spike protein of avian infectious bronchitis virus. Avian Pathology. 1984;13:573–583. doi: 10.1080/03079458408418556. [DOI] [PubMed] [Google Scholar]
  7. Cavanagh D., Davis P.J., Darbyshire J.H., Peters R.W. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J. Gen. Virol. 1986;67:1435–1442. doi: 10.1099/0022-1317-67-7-1435. [DOI] [PubMed] [Google Scholar]
  8. Davis L.G., Dibner M.D., Battey J.F. Elsevier; New York: 1986. Basic Methods in Molecular Biology. [Google Scholar]
  9. De Groot R.J., Luytjes W., Horzinek M.C., Van der Zeijst B.A.M., Spaan W.J.M., Lenstra J.A. Evidence for a coiled-coil structure in the spike protein of coronaviruses. J. Molec. Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geysen H.M., Meloen R., Barteling S.J. Vol. 81. 1984. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid; pp. 3998–4002. (Proc. natn. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geysen H.M., Tainer J.A., Rodda S.J., Mason T.J., Alexander H., Getzoff E.D., Lerner R.A. Chemistry of antibody bincling to a protein. Science. 1987;235:1184–1190. doi: 10.1126/science.3823878. [DOI] [PubMed] [Google Scholar]
  12. Haymerle H., Herz J., Bressan G.M., Frank R., Stanley K.K. Efficient construction of cDNA libraries in plasmid expression vectors using an adaptor strategy. Nucleic Acids Res. 1986;14:8615–8624. doi: 10.1093/nar/14.21.8615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koch G., Hartog L., Kant A., Van Roozelaar D., De Boer G.F. Antigenic differentiation of avian bronchitis virus variant strains employing monoclonal antibodies. Isr. J. Vet. Med. 1986;41:89–97. [Google Scholar]
  14. Kusters J.G., Niesters H.G.M., Bleumink-Pluym N.M.C., Davelaar F.G., Horzinek M.C., Van der Zeijst B.A.M. Molecular epidemiology of infectious bronchitis virus in the Netherlands. J. Gen. Virol. 1987;68:343–352. doi: 10.1099/0022-1317-68-2-343. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U.K., Favre M. Maturation of the head of bacteriophage T4. J. Molec. Biol. 1983;80:575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  16. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratories; Cold Spring Harbor: 1982. (Molecular Cloning, a Laboratory Manual). [Google Scholar]
  17. Mehra V., Sweetser D., Young R.A. Vol. 83. 1986. Efficient mapping of protein antigenic determinants; pp. 7013–7017. (Proc. natn. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mockett A.P.A., Cavanagh D., Brown T.D.K. Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis virus strain Massachusetts M41. J. Gen. Virol. 1984;65:2281–2286. doi: 10.1099/0022-1317-65-12-2281. [DOI] [PubMed] [Google Scholar]
  19. Niesters H.G.M., Lenstra J.A., Spaan W.J.M., Zijderveld A.J., Bleumink-Pluym N.M.C, Hong F., Van Scharrenburg G.J.M., Horzinek M.C., Van der Zeijst B.A.M. The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Res. 1986;5:253–263. doi: 10.1016/0168-1702(86)90022-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Niesters H.G.M., Bleumink-Pluym N.M.C., Osterhaus A.D.M.E., Horzinek M.C., Van der Zeijst B.A.M. Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies. Virology. 1987;161:511–519. doi: 10.1016/0042-6822(87)90145-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nunberg J.H., Rodgers G., Gilbert J.H., Snead R.M. Vol. 81. 1984. Method to map antigenic determinants recognized by monoclonal antibodies: localization of a determinant of virus neutralization on the feline leukemia virus envelope protein gp70; pp. 3675–3679. (Proc. natn. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rossman R.G., Arnold E., Erickson J.W., Frankenberger E.A., Griffith J.P., Hecht H.J., Johnson J.E., Kamer G., Luo M., Mosser A.G., Rueckert R.R., Sherry B., Vriend G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985;317:145–153. doi: 10.1038/317145a0. [DOI] [PubMed] [Google Scholar]
  23. Siddell S., Wege H., Ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  24. Stanley K.K. Solubilization and immune-detection of β-galactosidase hybrid proteins carrying foreign antigenic determinants. Nucl. Acids Res. 1983;11:4077–4092. doi: 10.1093/nar/11.12.4077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stanley K.K., Luzio J.P. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones cocling for human liver proteins. EMBO J. 1984;3:1429–1434. doi: 10.1002/j.1460-2075.1984.tb01988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Van Regenmortel M.H.V. Antigenic cross-reactivity between proteins and peptides: new insights and applications. Trends Biochem. Sci. 1987;12:237–240. [Google Scholar]
  28. Westhof E., Altschuh D., Moras D., Bloomer A.C., Mondragon A., Klug A., Van Regenmortel M.H.V. Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature. 1984;311:123–126. doi: 10.1038/311123a0. [DOI] [PubMed] [Google Scholar]
  29. Wiley D.C., Wilson I.A., Shekel J.J. Structural identification of the antibody-combining site of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature. 1981;289:373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Immunology are provided here courtesy of Elsevier

RESOURCES