Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Mar 10;13(3):287–324. doi: 10.1016/0165-0173(88)90010-0

Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis

Håkan Widner 1,2, Patrik Brundin 3,
PMCID: PMC7133672  PMID: 3066438

The content is available as a PDF (4.7 MB).

References

  • 1.Aarli J.A. The immune system and the nervous system. J. Neurol. 1983;203:137–154. doi: 10.1007/BF00313738. [DOI] [PubMed] [Google Scholar]
  • 2.Abraham J.A., Mergia A., Whang J.L., Tumolo A., Friedman J., Hjerrild K.A., Gospodarowicz D., Fiddes J.C. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science. 1986;233:545–548. doi: 10.1126/science.2425435. [DOI] [PubMed] [Google Scholar]
  • 3.Acres R.B., Lamb J.R., Feldman M. Effects of platelet-derived growth factor and epidermal growth factor on antigen-induced proliferation of human T-cell lines. Immunology. 1985;54:9–16. [PMC free article] [PubMed] [Google Scholar]
  • 4.Agid Y., Javoy-Agid F., Ruberg M. Biochemistry of neurotransmitters in Parkinson's disease. In: Marsden C.D., Fahn S., editors. Movement Disorders 2. Butterworths; London: 1987. pp. 166–230. [Google Scholar]
  • 5.Aizawa M., Natori T. Transplantation immunology in the rat. In: Yamamura Y., Tada T., editors. Progress in Immunology V. Academic; Tokyo: 1983. pp. 1439–1448. [Google Scholar]
  • 6.Andersson M., Pääbo S., Nilsson T., Peterson P.A. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell. 1985;43:215–222. doi: 10.1016/0092-8674(85)90026-1. [DOI] [PubMed] [Google Scholar]
  • 7.Andres K.H., von Düring M., Muszynski K., Schmidt R.F. Nerve fibers and their terminals of the dura mater encephali of the rat. Anat. Embryol. 1987;175:289–301. doi: 10.1007/BF00309843. [DOI] [PubMed] [Google Scholar]
  • 8.Backlund E.O., Granberg P.O., Hamberger B., Knutsson E., Mårtensson A., Sedvall G., Seiger Å., Olson L. Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J. Neurosurg. 1985;62:169–173. doi: 10.3171/jns.1985.62.2.0169. [DOI] [PubMed] [Google Scholar]
  • 9.Bakay R.A., Fiandaca M.S., Barrow D.L., Schiff A., Collins D.C. Preliminary report on the use of fetal tissue transplantation to correct MPTP-induced Parkinson-like syndrome in primates. Appl. Neurophysiol. 1985;48:358–361. doi: 10.1159/000101157. [DOI] [PubMed] [Google Scholar]
  • 10.Bakay R.A., Barrel D.L., Fiandaca M.S., luvone P.M., Schiff A., Collins D.C. Biochemical and behavioral correction of MPTP Parkinson-like syndrome by fetal cell transplantation. Ann. N.Y. Acad. Sci. 1987;495:623–640. doi: 10.1111/j.1749-6632.1987.tb23705.x. [DOI] [PubMed] [Google Scholar]
  • 11.Barker C.F., Billingham R.E. The role of afferent lymphatics in the rejection of skin homografts. J. Exp. Med. 1968;128:197–220. doi: 10.1084/jem.128.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Barker C.F., Billingham R.E. Immunologically privileged sites. Adv. Immunol. 1977;25:1–54. [PubMed] [Google Scholar]
  • 13.Betz A.L., Goldstein G.W. Polarity of the bloodbrain barrier: neutral amino acid transport into isolated brain capillaries. Science. 1978;202:225–227. doi: 10.1126/science.211586. [DOI] [PubMed] [Google Scholar]
  • 14.Beutler B., Greenwald D., Hulmes J.D., Chang M., Pan Y.-C.E., Mathison J., Ulevitch R., Cerami A. Identity of tumour necrosis factor and the macrophage-se-creted factor cachectin. Nature (Lond.) 1985;316:552–554. doi: 10.1038/316552a0. [DOI] [PubMed] [Google Scholar]
  • 15.Björklund A., Stenevi U. Reconstruction of the nigrostriatal pathway by intracerebral nigral transplants. Brain Res. 1979;177:555–560. doi: 10.1016/0006-8993(79)90472-4. [DOI] [PubMed] [Google Scholar]
  • 16.Björklund A., Schmidt R.H., Stenevi U. Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Res. 1980;212:39–45. doi: 10.1007/BF00234031. [DOI] [PubMed] [Google Scholar]
  • 17.Björklund A., Stenevi U., Dunnett S.B., Gage F.H. Cross-species grafting in a rat model of Parkinson's disease. Nature (Lond.) 1982;298:652–654. doi: 10.1038/298652a0. [DOI] [PubMed] [Google Scholar]
  • 18.Björklund A., Stenevi U., Schmidt R.H., Dunnett S.B., Gage F.H. Intracerebral grafting of neuronal cell suspensions. II. Survival and growth of nigral cell susensions implanted in different brain sites. Acta Physiol. Scand. 1983;(Suppl. 522):9–18. [PubMed] [Google Scholar]
  • 19.Björklund A., Stenevi U. Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuits. Annu. Rev. Neurosci. 1984;7:279–308. doi: 10.1146/annurev.ne.07.030184.001431. [DOI] [PubMed] [Google Scholar]
  • 20.Björklund A., Stenevi U. Intracerebral neural grafting: a historical perspective. In: Björklund A., Stenevi U., editors. Neural Grafting in the Mammalian CNS. Elsevier; Amsterdam: 1985. pp. 3–14. [Google Scholar]
  • 21.Björklund A., Lindvall O., Isacson O., Brundin P., Wictorin K., Strecker R.E., Clarke D.J., Dunnett S.B. Mechanism of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. Trends Neurosci. 1987;10:509–516. [Google Scholar]
  • 22.Bjorkman P.J., Spaer M.A., Samraoui B., Bennet W.S., Strominger J.L., Wiley D.C. Structure of the human class I histocompatibility antigen HLA-A2. Nature (Lond.) 1987;329:506–518. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  • 23.Block M.A., Tworek E.J., Miller J.M. Parathyroid homografts in brain tissue. Arch. Surg. 1966;92:778–784. doi: 10.1001/archsurg.1966.01320230126023. [DOI] [PubMed] [Google Scholar]
  • 24.Bradbury M.W. Wiley; Chichester: 1979. The Concept of a Blood-Brain Barrier. [Google Scholar]
  • 25.Bradbury M.W., Westrop R.J. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J. Physiol. (Lond.) 1983;339:519–534. doi: 10.1113/jphysiol.1983.sp014731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Bradbury M.W. Vol. 43. 1984. The structure and function of the blood-brain barrier; pp. 186–190. (Fed. Proc.). [PubMed] [Google Scholar]
  • 27.Bradbury M.W., Westrop R.J. Lymphatics and the drainage of cerebrospinal fluid. In: Sharpio K., Marmarou A., Portnoy H., editors. Hydrocephalus. Raven; New York: 1984. pp. 69–81. [Google Scholar]
  • 28.Broadwell R.D., Charlton H.M., Balin B.J., Salcman M. Angioarchitecture of the CNS, pituitary gland, and intracerebral grafts revealed with peroxidase cytochemistry. J. Com. Neurol. 1987;260:47–62. doi: 10.1002/cne.902600105. [DOI] [PubMed] [Google Scholar]
  • 29.Brown M.A., Pierce J.H., Watson C.J., Falco J., Ihle J.N., Paul W.E. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell. 1987;50:809–818. doi: 10.1016/0092-8674(87)90339-4. [DOI] [PubMed] [Google Scholar]
  • 30.Brundin P., Isacson O., Björklund A. Monitoring of cell viability in suspension of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res. 1985;331:251–259. doi: 10.1016/0006-8993(85)91550-1. [DOI] [PubMed] [Google Scholar]
  • 31.Brundin P., Isacson O., Gage F.H., Stenevi U., Björklund A. Intracerebral grafts of neuronal cell suspensions. In: Björklund A., Stenevi U., editors. Neurol Grafting in the Mammalian CNS. Elsevier; Amsterdam: 1985. pp. 51–59. [Google Scholar]
  • 32.Brundin P., Nilsson O.G., Gage F.H., Björklund A. Cyclosporin A increases survival of cross-species intrastriatal grafts of embryonic dopamine-containing neu rons. Exp. Brain Res. 1985;60:204–208. doi: 10.1007/BF00237035. [DOI] [PubMed] [Google Scholar]
  • 33.Brundin P., Nilsson O.G., Strecker R.E., Lindvall O., Åstedt B., Björklund A. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson's disease. Exp. Brain Res. 1986;65:235–240. doi: 10.1007/BF00243848. [DOI] [PubMed] [Google Scholar]
  • 34.Brundin P., Strecker R.E., Lindvall O., Isacson O., Nilsson O.G., Barbin G., Prochiantz A., Forni C., Nieoullon A., Widner H., Gage F.H., Björklund A. Intracerebral grafting of dopamine neurons: experimental basis for clinical trials in patients with Parkinson's disease. Ann. N.Y. Acad. Sci. 1987;495:473–496. doi: 10.1111/j.1749-6632.1987.tb23695.x. [DOI] [PubMed] [Google Scholar]
  • 35.Brundin P., Barbin G., Strecker R.E., Isacson O., Prochiantz A., Björklund A. Survival and function of dissociated dopamine neurones grafted at different development stages or after being cultured in vitro. Dev. Brain Res. 1988;39:233–243. doi: 10.1016/0165-3806(88)90027-2. [DOI] [PubMed] [Google Scholar]
  • 36.Brundin P., Strecker R.E., Widner H., Clarke D.J., Nilsson O.G., Åstedt B., Lindvall O., Björklund A. Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp. Brain Res. 1988;70:192–208. doi: 10.1007/BF00271860. [DOI] [PubMed] [Google Scholar]
  • 37.Brundin, P., Widner, H., Nilsson, O.G., Strecker, R.E. and Björklund, A., Intracerebral xenografts of dopamine neurons: the role of immunosuppression and the bloodbrain barrier, Exp. Brain Res., in press. [DOI] [PubMed]
  • 38.Budd R.C., Cerottini J.-C., MacDonald H.R. Selectively increased production of interferon-γ by subsets of Lyt-2+ and L3T4+T cells identified by expression of Pgp1. J. Immunol. 1987;138:3583–3586. [PubMed] [Google Scholar]
  • 39.Cambell S.I. Thy-1. Biochem. J. 1981;195:15–30. doi: 10.1042/bj1950015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Charlton H.M., Barclay A.N., Williams A.F. Detection of neuronal tissue from brain grafts with anti-Thy-1.1 antibody. Nature (Lond.) 1983;305:825–827. doi: 10.1038/305825a0. [DOI] [PubMed] [Google Scholar]
  • 41.Cher D.J., Mosman T.R. Two types of murine helper T cell clone. 2. Delayed type-hypersensitivity is mediated by Th1 clones. J. Immunol. 1986;138:3688–3696. [PubMed] [Google Scholar]
  • 42.Cherwinski H.M., Shumacher J.D., Brown K.D., Mosman T.R. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J. Exp. Med. 1987;166:1229–1244. doi: 10.1084/jem.166.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Crone C. Facilitated transport of glucose from blood into brain. J. Physiol. (Lond.) 1965;181:103–113. doi: 10.1113/jphysiol.1965.sp007748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Crone C. Vol. 45. 1986. Modulation of solute permeability in microvascular endothelium; pp. 77–83. (Fed. Proc.). [PubMed] [Google Scholar]
  • 45.Cserr H.F. The convection of brain interstitial fluid. In: Sharpio K., Marmarou A., Portnoy H., editors. Hydrocephalus. Raven; New York: 1984. pp. 59–67. [Google Scholar]
  • 46.Cunningham B.A. Cell adhesion molecules: a new perspective on molecular embryology. Trend. Biol. Sci. 1986;11:423–426. [Google Scholar]
  • 47.Cupps T.R., Fauci A.C. Corticosteroid-mediated immunoregulation in man. Immunol. Rev. 1982;65:133–155. doi: 10.1111/j.1600-065x.1982.tb00431.x. [DOI] [PubMed] [Google Scholar]
  • 48.Cuturi M.C., Murphy M., Costa-Giomi M.P., Weinmann R., Perussia B., Trinchieri G. Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes. J. Exp. Med. 1987;165:1581–1594. doi: 10.1084/jem.165.6.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Daar A.S., Fuggle S.V., Fabre J.W. The detailed distribution of HLA-A, B, C antigens in normal human organs. Transplantation. 1984;38:287–292. doi: 10.1097/00007890-198409000-00018. [DOI] [PubMed] [Google Scholar]
  • 50.Daniloff J.K., Wells J., Ellis J. Cross-species septal transplants: recovery of choline acetyl transferase activity. Brain Res. 1984;324:151–154. doi: 10.1016/0006-8993(84)90634-6. [DOI] [PubMed] [Google Scholar]
  • 51.Daniloff J.K., Bodony R.P., Low W.C., Wells J. Cross-species embryonic septal transplants: restoration of a conditioned learning behavior. Brain Res. 1985;346:176–180. doi: 10.1016/0006-8993(85)91112-6. [DOI] [PubMed] [Google Scholar]
  • 52.Daniloff J.K., Low W.C., Bodony R.P., Wells J. Cross-species neural transplants: embryonic septal nuclei to the hippocampal formation of adult rats. Exp. Brain Res. 1985;59:73–82. doi: 10.1007/BF00237668. [DOI] [PubMed] [Google Scholar]
  • 53.Das G.D., Altman J. Transplanted precursors of nerve cells: their fate in the cerebellums of young rats. Science. 1971;173:637–638. doi: 10.1126/science.173.3997.637. [DOI] [PubMed] [Google Scholar]
  • 54.Das G.D., Hallas B.H., Das K.G. Transplantation of neural tissue in the brains of laboratory mammals: technical details and comments. Experientia. 1979;35:143–153. doi: 10.1007/BF01920580. [DOI] [PubMed] [Google Scholar]
  • 55.Das G.D. Intraparenchymal transplantation. In: Björklund A., Stenevi U., editors. Neurol Grafting in the Mammalian CNS. Elsevier; Amsterdam: 1985. pp. 23–31. [Google Scholar]
  • 56.Date, I., Kawamura, K. and Nakashima, H., Histological signs of immune reactions against allogeneic solid neural grafts in the mouse cerebellum depend on the MHC locus, Exp. Brain Res., in press. [DOI] [PubMed]
  • 57.deBault L.E., Cantilla P.A. γ-Glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science. 1980;207:653–655. doi: 10.1126/science.6101511. [DOI] [PubMed] [Google Scholar]
  • 58.Del Conte G. Einpflanzungen von embryonalem Gewebe ins Gehirn. Pathol. Anat. Beitr. 1907;42:193–202. [Google Scholar]
  • 59.deWaal R.M.W., Bogman M.J.J., Maass C.N., Cornelissen L.M.H., Tax W.J.M., Koene R.A.P. Variable expression of Ia antigens on the vascular endothelium of mouse skin allografts. Nature (Lond.) 1983;303:426–429. doi: 10.1038/303426a0. [DOI] [PubMed] [Google Scholar]
  • 60.Dorsch S., Wotherspoon J., Keith I., Roser B. The role of regional lymph node in the response to secondarily vascularized grafts. Transplantation. 1983;35:231–239. doi: 10.1097/00007890-198303000-00008. [DOI] [PubMed] [Google Scholar]
  • 61.Dunn E.H. Primary and secondary findings in a series of attempts to transplant cerebral cortex to the albino rat. J. Comp. Neurol. 1917;27:565–582. [Google Scholar]
  • 62.Durum S.K., Schmidt J.A., Oppenheim J.J. Interleukin 1: an immunological perspective. Annu. Rev. Immunol. 1985;3:263–287. doi: 10.1146/annurev.iy.03.040185.001403. [DOI] [PubMed] [Google Scholar]
  • 63.Dusart I., Nothias F., Roudier F., Peschanski M. Vascularization of the neonucleus constructed by embryonic neurons grafted in the adult CNS as a cell suspension. Soc. Neurosci. Abstr. 1987:81.17. [Google Scholar]
  • 64.Dustin M.L., Rothlein R., Bhan A.K., Dinarello C.A., Springer T.A. Induction by IL-1 and interferon-γ: tissue distribution and function of a natural adherence molecule (ICAM-1) J. Immunol. 1986;137:245–254. [PubMed] [Google Scholar]
  • 65.Duijvestijn A.M., Schreiber A.B., Butcher B.C. Vol. 83. 1986. Interferon-γ regulates an antigen specific for endotheliai cells involved in lymphocyte traffic; pp. 9114–9118. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Dymecki J., Jedrzejewska A., Poltorak M., Pucilowski O., Bidzinski A., Wosko W. Effects of transplanting rabbit substantia nigra into the striatum of rats with experimental hemiparkinsonism. Ann. N.Y. Acad. Sci. 1987;495:696–698. [Google Scholar]
  • 67.Ebeling E. Experimentelle Gehirntumoren bei Mäusen. Z. Krebsforsch. 1914;14:151–156. [Google Scholar]
  • 68.Edelman G.M. Cell-adhesion molecules in neural histogenesis. Annu. Rev. Physiol. 1986;48:417–430. doi: 10.1146/annurev.ph.48.030186.002221. [DOI] [PubMed] [Google Scholar]
  • 69.Erlich S.S., McComb J.G., Hyman S., Weiss M.H. Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J. Neurosurg. 1986;64:466–473. doi: 10.3171/jns.1986.64.3.0466. [DOI] [PubMed] [Google Scholar]
  • 70.Fierz W., Endler B., Reske K., Wekerle H., Fontana A. Astrocytes as antigen-presenting cells. I. Induction of la antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immunol. 1985;134:3785–3793. [PubMed] [Google Scholar]
  • 71.Finsen B., Oteruelo F., Zimmer J. Immunological reactions to brain grafts. Characterization of lymphocytic and astroglial reactions. Neurosci. Lett. 1987;(Suppl. 258):774. [Google Scholar]
  • 72.Finsen B., Poulsen P.H., Zimmer J. Xenografting of fetal mouse hippocampal tissue to the brain of adult rats. Effect of cyclosporin A treatment. Exp. Brain Res. 1988;70:117–133. doi: 10.1007/BF00271854. [DOI] [PubMed] [Google Scholar]
  • 73.Fontana A., Kristensen F., Dubs R., Gemsa D., Weber E. Production of prostaglandin E and interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J. Immunol. 1982;129:2413–2419. [PubMed] [Google Scholar]
  • 74.Fontana A., Fierz W., Wekerle H. Astrocytes present myelin basic protein to encephalolitogenic T-cell lines. Nature (Lond.) 1984;307:273–276. doi: 10.1038/307273a0. [DOI] [PubMed] [Google Scholar]
  • 75.Fontana A., Erb P., Pircher H., Zinkernagel R., Weber E., Fierz W. Astrocytes as antigen-presenting cells. Part II. Unlike H-2K-dependent cytotoxic cells, H-2 1a-restricted T cells are only stimulated in the presence of interferon-γ. J. Neuroimmunol. 1986;12:15–28. doi: 10.1016/0165-5728(86)90093-7. [DOI] [PubMed] [Google Scholar]
  • 76.Freed C.R., Richard J.B., Hutt C., Whalen J., Peterson R., Reite M. Behavioral effects of fetal dopamine cell transplantation in bonnet monkeys with MPTP-induced parkinsonism. Soc. Neurosci. Abstr. 1987:219.5. [Google Scholar]
  • 77.Freed W.J. Functional brain tissue transplantation: reversal of lesion induced rotation by intraventricular substantia nigra and adrenal medullary grafts, with a intracranial retinal grafts. Biol. Psychiatry. 1983;18:1205–1267. [PubMed] [Google Scholar]
  • 78.Freed W.J. Transplantation of tissues to the cerebral ventricles: methodological details and rate of graft survival. In: Björklund A., Stenevi U., editors. Neurol Grafting in the Mammalian CNS. Elsevier; Amsterdam: 1985. pp. 31–41. [Google Scholar]
  • 79.Freed W.J., Cannon-Spoor H.E., Krauthamer E. Intrastriatal adrenal medulla grafts in rats, long-term survival and behavioral effects. J. Neurosurg. 1986;65:664–670. doi: 10.3171/jns.1986.65.5.0664. [DOI] [PubMed] [Google Scholar]
  • 80.Freeman T.B., Brandies L., Pearson J., Flamm E.S. Cross-species grafts of embryonic rabbit mesencephalic tissue survives and cause behavioral recovery in the presence of chronic immunosuppression. Ann. N. Y. Acad. Sci. 1987;495:699–702. [Google Scholar]
  • 81.Frej K., Bodmer S., Schwerdel C., Fontana A. Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J. Immunol. 1986;137:3521–3527. [PubMed] [Google Scholar]
  • 82.Futrell J.W., Myers G.H. Role of regional lymphatics in tumor allograft rejection. Transplantation. 1972;13:551–557. doi: 10.1097/00007890-197206000-00001. [DOI] [PubMed] [Google Scholar]
  • 83.Gallatin M., St John T.P., Siegelman M., Reichert R., Butcher E.C., Weissman I.L. Lymphocyte homing receptors. Cell. 1986;44:673–680. doi: 10.1016/0092-8674(86)90832-9. [DOI] [PubMed] [Google Scholar]
  • 84.Gash D.M., Notter M.F.D., Okawara S.H., Kraus A.L., Joynt R.J. Amitotic neuroblastoma cells used for neural implants in monkeys. Science. 1986;233:1420–1422. doi: 10.1126/science.3749886. [DOI] [PubMed] [Google Scholar]
  • 85.Geyer S.J., Gill T.J. Immunogenetic aspects of intracerebral skin transplanted in inbred rats. Am. J. Pathol. 1979;94:569–579. [PMC free article] [PubMed] [Google Scholar]
  • 86.Geyer S.J., Gill T.J., Kunz H.W., Moody E. Immunogenetic aspects of transplantation in the rat brain. Transplantation. 1985;39:244–247. doi: 10.1097/00007890-198503000-00005. [DOI] [PubMed] [Google Scholar]
  • 87.Giullan D., Lachman L.B. Interleukin-1 stimulation of astroglial proliferation after brain injury. Science. 1985;228:497–499. doi: 10.1126/science.3872478. [DOI] [PubMed] [Google Scholar]
  • 88.Glees P. Studies of cortical regeneration with special reference to cerebral implants. In: Windle W.F., editor. Regeneration in the Central Nervous System. Thomas; Springfield: 1955. pp. 94–111. [Google Scholar]
  • 89.Gonatas N.K., Greene M.I., Waksman B.H. Genetic and molecular aspects of demyelination. Immunol. Today. 1986;7:121–126. doi: 10.1016/0167-5699(86)90072-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Goridis C., Deagostini-Bazin H., Hirn M., Hirsch M.R., Rougon G., Sadoul R., Langley O.K., Gombos G., Finne J. Vol. 48. 1983. Neural surface antigens during nervous system development; pp. 527–537. (Cold Spring Harbour Symp. Q. Bull.). [DOI] [PubMed] [Google Scholar]
  • 91.Granholm A.C., Almqvist P., Seiger Å., Olson L. Thy-1-like immunoreactivity in human brain during development. Brain Res. Bull. 1986;17:107–115. doi: 10.1016/0361-9230(86)90166-8. [DOI] [PubMed] [Google Scholar]
  • 92.Greene H.S. Transplantation of tumors to the brains of heterologous species. Cancer Res. 1951;11:529–534. [PubMed] [Google Scholar]
  • 93.Greene H.S. Transplantation of human brain tumors to brains of laboratory animals. Cancer Res. 1953;13:422–426. [PubMed] [Google Scholar]
  • 94.Greene H.S. Heterotransplantation of tumors. Ann. N.Y. Acad. Sci. 1957;69:818–829. doi: 10.1111/j.1749-6632.1957.tb49720.x. [DOI] [PubMed] [Google Scholar]
  • 95.Gullberg M., Larsson E.L. Selective inhibition of antigen-induced ‘step-one’ in cytotoxic T lymphocytes by anti-Lyt-2 antibodies. Eur. J. Immunol. 1982;12:1006–1011. doi: 10.1002/eji.1830121205. [DOI] [PubMed] [Google Scholar]
  • 96.Gurney M.E., Heinrich S.P., Lee M.R., Yin H.-S. Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science. 1987;234:566–574. doi: 10.1126/science.3764429. [DOI] [PubMed] [Google Scholar]
  • 97.Gurney M.E., Apatoff B.R., Spear G.T., Baumel M.J., Antel J.P., Brown Bania M., Reder A.T. Neuroleukin: a lymphokine product of lectin-stimulated T cells. Science. 1987;234:574–581. doi: 10.1126/science.3020690. [DOI] [PubMed] [Google Scholar]
  • 98.Hafler D.A., Fox D.A., Manning M.E., Schlossman S.F., Reinherz E.L., Weiner H.L. In vivo activated T lymphocytes in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. N. Engl. J. Med. 1985;312:1405–1411. doi: 10.1056/NEJM198505303122201. [DOI] [PubMed] [Google Scholar]
  • 99.Hardebo J.E., Owman C. Barrier mechanisms for neurotransmitter monoamines and their precursors at blood-brain interface. Ann. Neurol. 1980;8:1–11. doi: 10.1002/ana.410080102. [DOI] [PubMed] [Google Scholar]
  • 100.Harling-Berg C., Knopf P., Pettigrew K.D., Cserr H.F. Role of cervical lymphatics in the systemic humoral immune response to human serum albumin (HSA) microinfused into cerebrospinal fluid (CSF) Soc. Neurosci. Abstr. 1987:380.1. [Google Scholar]
  • 101.Hart D.N., Fabre J.W. Demonstration and characterization of la-positive dendritic cells in the interstitial connective tissue of rat heart and other tissues, but not brain. J. Exp. Med. 1981;154:347–361. doi: 10.1084/jem.154.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Hasek M., Lengerova A., Hraba T. Transplantation immunity and tolerance. Adv. Immunol. 1961;1:1–66. [Google Scholar]
  • 103.Hasek M., Chutna J., Sladecek M., Lodin Z. Immunological tolerance and tumour allografts in the brain. Nature (Lond.) 1977;268:68–69. doi: 10.1038/268068a0. [DOI] [PubMed] [Google Scholar]
  • 104.Hasek M., Chutna J. Complexity of the state of immunological tolerance. Immunol. Rev. 1979;46:4–26. doi: 10.1111/j.1600-065x.1979.tb00282.x. [DOI] [PubMed] [Google Scholar]
  • 105.Hayes G.M., Woodroofe M.N., Cuzner M.L. Microglia are the major cell type expressing MHC class II in human white matter. J. Neurol. Sci. 1987;80:25–37. doi: 10.1016/0022-510x(87)90218-8. [DOI] [PubMed] [Google Scholar]
  • 106.Head J.R., Griffin S.T. Vol. 224. 1985. Functional capacity of solid tissue transplants in the brain: evidence for immunological privilege; pp. 375–387. (Proc. R. Soc. Lond. Ser. B.). [DOI] [PubMed] [Google Scholar]
  • 107.Hildeman W.H. Components and concepts of antigenic strength. Transpl. Rev. 1970;3:5–22. doi: 10.1111/j.1600-065x.1970.tb00252.x. [DOI] [PubMed] [Google Scholar]
  • 108.Hirano T., Yasukawa K., Harada H., Taga T., Watanabe Y., Matsuda T., Kashiwamura S., Nakajima K., Koyama K., Iwamatsu A., Tsunasawa S., Sakiyama F., Matsui H., Takahara Y., Taniguchi T., Kishimoto T. Complementary DNA for a human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature (Lond.) 1986;324:73–76. doi: 10.1038/324073a0. [DOI] [PubMed] [Google Scholar]
  • 109.Hofman F.M., Danilovs J.A., Taylor C.R. HLADR (Ia)-positive dendritic-like cells in human fetal nonlymphoid tissues. Transplantation. 1984;37:590–594. doi: 10.1097/00007890-198406000-00013. [DOI] [PubMed] [Google Scholar]
  • 110.Houston M.B., Kunz H.W., Gill T.J., Lund R.D. Course of transplant rejection within the CNS. Soc. Neurosci. Abstr. 1987:81.12. [Google Scholar]
  • 111.Hunkapiller T., Hood L. The growing immunoglobulin gene superfamily. News and views. Nature (Lond.) 1986;323:15–16. doi: 10.1038/323015a0. [DOI] [PubMed] [Google Scholar]
  • 112.Hämmerling G.J. Tissue distribution of 1a antigens and their expression of lymphocyte subpopulations. Transpl. Rev. 1976;30:64–82. [PubMed] [Google Scholar]
  • 113.Häyry P., von Willebrand E., Parthenais E., Nemlander A., Soots A., Lautenschlager I., Alfoldy P., Renkonen R. The inflammatory mechanisms of allograft rejection. Immunol. Rev. 1984;77:85–142. doi: 10.1111/j.1600-065x.1984.tb00719.x. [DOI] [PubMed] [Google Scholar]
  • 114.Inoue H., Kohsaka S., Yoshida K., Ohtani M., Toya S., Tsukada Y. Cyclosporin A enhances the survivability of mouse cerebral cortex grafted into the third ventricle of rat brain. Neurosci. Lett. 1985;54:85–90. doi: 10.1016/s0304-3940(85)80122-1. [DOI] [PubMed] [Google Scholar]
  • 115.Inoue H., Kohsaka S., Yoshida K., Otani M., Toya S., Tsukada Y. Immunohistochemical studies on mouse cerebral cortex grafted into the third ventricle of rats treated with cyclosporin A. Neurosci. Lett. 1985;57:289–294. doi: 10.1016/0304-3940(85)90507-5. [DOI] [PubMed] [Google Scholar]
  • 116.Jaeger C.B. Immunocytochemical study of PC12 cells grafted to the brain of immature rats. Exp. Brain Res. 1985;59:615–624. doi: 10.1007/BF00261353. [DOI] [PubMed] [Google Scholar]
  • 117.Jalkanen S.T., Bargatze R.F., Herron L.R., Butcher E.C. A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. Eur. J. Immunol. 1986;16:1195–1202. doi: 10.1002/eji.1830161003. [DOI] [PubMed] [Google Scholar]
  • 118.Jalkanen S., Reichert R.A., Gallatin W.M., Bargatze R.F., Weissman I.L., Butcher E.C. Homing receptors and the control of lymphocyte migration. Immunol. Rev. 1986;91:40–60. doi: 10.1111/j.1600-065x.1986.tb01483.x. [DOI] [PubMed] [Google Scholar]
  • 119.Jalkanen S., Steere A.C., Fox R.I., Butcher E.C. A distinct endothelial cell recognition system that controls lymphocyte traffic into inflamed synovium. Science. 1986;233:556–558. doi: 10.1126/science.3726548. [DOI] [PubMed] [Google Scholar]
  • 120.Janzer R.C., Raff M.C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature (Lond.) 1987;325:253–257. doi: 10.1038/325253a0. [DOI] [PubMed] [Google Scholar]
  • 121.Jaye M., Howk R., Burgess W., Ricca G.A., Chiu I., Ravera M.W., O'Brien S.J., Modi W.S., Maciag T., Drohan W.N. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science. 1986;233:541–544. doi: 10.1126/science.3523756. [DOI] [PubMed] [Google Scholar]
  • 122.Kahan B.D. Vol. 17. 1985. Cyclosporin: the agent and its actions; pp. 5–18. (Transpl. Proc.). Suppl. 1. [Google Scholar]
  • 123.Kamo H., Kim S.U., McGeer P.L., Shin D.H. Functional recovery in a rat model of Parkinson's disease following transplantation of cultured human sympathetic neurons. Brain Res. 1986;397:372–376. doi: 10.1016/0006-8993(86)90641-4. [DOI] [PubMed] [Google Scholar]
  • 124.Kamo H., Kim S.U., McGeer P.L., Araki M., Tomimoto H., Kimura H. Transplantation of human spinal cord cells into the rat motor cortex: use of phaseolus vulgaris leucoagglutinin as a cell marker. Neurosci. Lett. 1987;76:163–167. doi: 10.1016/0304-3940(87)90709-9. [DOI] [PubMed] [Google Scholar]
  • 125.Kaplan H.J., Streilein J.W. Do immunologically privileged sites require a functional spleen? Nature (Lond.) 1974;251:553–554. doi: 10.1038/251553a0. [DOI] [PubMed] [Google Scholar]
  • 126.Kim S.U. Antigen expression by glial cells grown in culture. J. Neuroimmunol. 1985;8:255–282. doi: 10.1016/s0165-5728(85)80066-7. [DOI] [PubMed] [Google Scholar]
  • 127.Kinashi T., Harada N., Sevrinson E., Tanabe T., Sideras P., Konishi M., Azuma C., Tominaga A., Bergstedt-Lindqvist S., Takahashi M., Matsuda F., Yaoita Y., Takatsu K., Honjo T. Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature (Lond.) 1986;324:70–73. doi: 10.1038/324070a0. [DOI] [PubMed] [Google Scholar]
  • 128.Klein G. Factors that interfere with or prevent effective destruction of tumors via immune mechanisms. In: Smith R.T., Laundy M., editors. Immunobiology of TumorHost Relationship. Academic; London: 1975. pp. 203–276. [Google Scholar]
  • 129.Klein J., Juretic A., Baxevanis C.N., Nagy Z.A. The traditional new version of the mouse H-2 complex. Nature (Lond.) 1981;291:455–460. doi: 10.1038/291455a0. [DOI] [PubMed] [Google Scholar]
  • 130.Klein J. Wiley; 1982. Immunology, the Science of Self-Nonself Discrimination; pp. 445–507. [Google Scholar]
  • 131.Klein J. Wiley; 1986. Natural History of the Major Histocompatibility Complex; pp. 194–195. [Google Scholar]; Klein J. 1986. Natural History of the Major Histocompatibility Complex; p. 211. [Google Scholar]
  • 132.Koren H.S. Proposed classification of leukocyte associated cytolytic molecules. Immunol. Today. 1987;8:69–71. doi: 10.1016/0167-5699(87)90844-9. [DOI] [PubMed] [Google Scholar]
  • 133.Lafferty K.J., Prowse S.J., Simenonovic C.J., Warren H.S. Immunobiology of tissue transplantation: a return to the passenger leukocyte concept. Annu. Rev. Immunol. 1983;1:143–173. doi: 10.1146/annurev.iy.01.040183.001043. [DOI] [PubMed] [Google Scholar]
  • 134.Lampson L.A., Fischer C.A. Vol. 81. 1984. Weak HLA and β2-microglobulin expression of neuronal cell lines can be mod ulated by interferon; pp. 6476–6480. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Lampson L.A. Molecular bases of the immune system response to neural antigens. Trend. Neurosci. 1987;10:211–216. [Google Scholar]
  • 136.Lance E.M. A functional and morphological study of intracranial parathyroid allografts in the dog. Transplantation. 1967;5:1471–1483. [Google Scholar]
  • 137.Lance E.M. A functional and morphological study of the intracranial thyroid allografts in the dog. Surg. Gynecol. Obstet. 1967;125:529–539. [PubMed] [Google Scholar]
  • 138.Larsen G.L., Henson P.M. Mediators of inflammation. Annu. Rev. Immunol. 1983;1:335–359. doi: 10.1146/annurev.iy.01.040183.002003. [DOI] [PubMed] [Google Scholar]
  • 139.Lavi E., Suzumura A., Zoltick P.W., Murasko D.M., Silberberg D.H., Weiss S.R. Tumor necrosis factor induces MHC class I antigen expression on mouse astrocytes. J. Neuroimmunol. 1987;16:102. doi: 10.1016/0165-5728(88)90102-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Lee M.H., Lossinsky A.S., Rabe A., Wisniewski H.M. Intact blood-brain barrier in large neocortical transplants in the rat brain. Soc. Neurosci. Abstr. 1987:81.18. [Google Scholar]
  • 141.Le Gros Clark W.E. Neuronal differentiation in implanted fetal cortical tissue. J. Neurol. Psychiatry. 1940;3:263–284. doi: 10.1136/jnnp.3.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Leibovich S.J., Polverini P.J., Shepard H.M., Wiseman D.M., Shively V., Nuseir N. Macrophage-induced angiogenesis is mediated by tumor necrosis factorα. Nature (Lond.) 1987;329:630–632. doi: 10.1038/329630a0. [DOI] [PubMed] [Google Scholar]
  • 143.Leszczynski D., Ferry B., Schellekens H., v.d. Meide P., Häyrä P. Antagonistic effects of γ-interferon and steroids on tissue antigenicity. J. Exp. Med. 1986;164:1470–1477. doi: 10.1084/jem.164.5.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Lindvall O., Backlund E.-O., Farde L., Sedvall G., Freedman R., Hoffer B., Nobin A., Seiger Å., Olson L. Transplantation in Parkinson's disease: two cases of adrenal medullary grafts to the putamen. Ann. Neurol. 1987;22:457–468. doi: 10.1002/ana.410220403. [DOI] [PubMed] [Google Scholar]
  • 145.Lindvall O., Dunnett S.B., Brundin P., Björklund A. Transplantation of catecholamine-producing cells to the basal ganglia in Parkinson's disease: experimental and clinical studies. In: Rose C., editor. Parkinson's Disease; Clinical and Experimental Advances. Libbey; London: 1987. pp. 189–206. [Google Scholar]
  • 146.Lodin Z., Hasek M., Chutna J., Sladecek M., Holan V. Transplantation immunity in the brain. J. Neurol. Sci. 1977;3:275–280. doi: 10.1002/jnr.490030405. [DOI] [PubMed] [Google Scholar]
  • 147.Love J.A., Leslie R.A. The effects of raised ICP on lymph flow in the cervical lymphatic trunks in cats. J. Neurosurg. 1984;60:577–581. doi: 10.3171/jns.1984.60.3.0577. [DOI] [PubMed] [Google Scholar]
  • 148.Loveland B., Simpson E. The non-MHC transplantation antigens: neither weak nor minor. Immunol. Today. 1987;7–8:223–229. doi: 10.1016/0167-5699(86)90109-X. [DOI] [PubMed] [Google Scholar]
  • 149.Low W.C., Lewis P.R., Bunch S.T. Embryonic neuronal transplants across a major histocompatibility barrier: survival and specificity of innervation. Brain Res. 1983;262:328–333. doi: 10.1016/0006-8993(83)91028-4. [DOI] [PubMed] [Google Scholar]
  • 150.Lund R.D., Rao K., Hankin M.H., Kunz H.W., Gill T.J., III Transplantation of retina and visual cortex to rat brains of different ages. Maturation, connection patterns, and immunological consequences. Ann. N.Y. Acad. Sci. 1987;495:227–241. doi: 10.1111/j.1749-6632.1987.tb23678.x. [DOI] [PubMed] [Google Scholar]
  • 151.Madrazo I., Drucker-Colin R., Diaz V., Martinez-Mata J., Torres C., Becerril J.J. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson's disease. N. Engl. J. Med. 1987;316:831–834. doi: 10.1056/NEJM198704023161402. [DOI] [PubMed] [Google Scholar]
  • 152.Makinodan T., Kay M.B. Age influence on the immune system. Adv. Immunol. 1980;29:287–330. doi: 10.1016/s0065-2776(08)60047-4. [DOI] [PubMed] [Google Scholar]
  • 153.Mason D.W., Charlton H.M., Jones A., Parry D.M., Simmonds S.J. Immunology of allograft rejection in mammals. In: Björklund A., Stenevi U., editors. Neural Grafting in the Mammalian CNS. Elsevier; Amsterdam: 1985. pp. 91–98. [Google Scholar]
  • 154.Mason D.W., Charlton H.M., Jones A.J., Lavy C.B., Puklavec M., Simmonds S.J. The fate of allogeneic and xenogeneic neuronal tissue transplantated into the third ventricle of rodents. Neuroscience. 1986;19:685–694. doi: 10.1016/0306-4522(86)90292-7. [DOI] [PubMed] [Google Scholar]
  • 155.Mason D.W., Morris P.J. Effector mechanisms in allograft rejection. Annu. Rev. Immunol. 1986;4:119–145. doi: 10.1146/annurev.iy.04.040186.001003. [DOI] [PubMed] [Google Scholar]
  • 156.Massa P.T., Dörries R., ter Meulen V. Viral particles induce Ia antigens expression on astrocytes. Nature (Lond.) 1986;320:543–546. doi: 10.1038/320543a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.McCarron R.M., Kempski O., Spatz M., McFarlin D. Presentation of myelin basic protein by murine cerebral vascular endothelial cells. J. Immunol. 1985;134:3100–3103. [PubMed] [Google Scholar]
  • 158.Medawar P.B. Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 1948;29:58–69. [PMC free article] [PubMed] [Google Scholar]
  • 159.Medawar P.B. Ciba Foundation Symp. 1960. Theories of Immunological Tolerance; pp. 134–149. (Cellular Aspects of Immunity). [Google Scholar]
  • 160.Merrill J.E. Miacroglia: neural cells reactive to lymphokines and growth factors. Immunol. Today. 1987;8:146–150. doi: 10.1016/0167-5699(87)90144-7. [DOI] [PubMed] [Google Scholar]
  • 161.Meuer S.C., Acuto O., Hercend T., Schlossman S.F., Reinherz E.L. The human T-cell receptor. Annu. Rev. Immunol. 1984;2:23–50. doi: 10.1146/annurev.iy.02.040184.000323. [DOI] [PubMed] [Google Scholar]
  • 162.Milton A., Spencer S.C., Fabre J.W. The effects of cyclosporin on the induction of donor class I and II MHC antigens in the heart and kidney allografts in the rat. Transplantation. 1986;42:337–347. doi: 10.1097/00007890-198610000-00002. [DOI] [PubMed] [Google Scholar]
  • 163.Miossec P., Yu C., Ziff M. Lymphocyte chemotactic activity of human interleukin-1. J. Immunol. 1984;133:2007–2011. [PubMed] [Google Scholar]
  • 164.Murphy J.B., Sturm E. Conditions determining the transplantability of tissues in the brain. J. Exp. Med. 1923;38:183–197. doi: 10.1084/jem.38.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Möller E. Contact induced cytotoxicity by lymphoid cells containing foreign isoantigens. Science. 1965;147:873–879. doi: 10.1126/science.147.3660.873. [DOI] [PubMed] [Google Scholar]
  • 166.Möller G., editor. Molecular genetics of class I and II MHC antigens, 1. Vol. 84. 1985. pp. 7–143. (Immunol. Rev.). [Google Scholar]
  • 167.Möller G., editor. Molecular genetics of class I and II MHC antigens, 2. Vol. 85. 1985. pp. 5–168. (Immunol. Rev.). [Google Scholar]
  • 168.Möller G., editor. Molecular genetics of class III MHC antigens. Vol. 87. 1985. pp. 7–208. (Immunol. Rev.). [Google Scholar]
  • 169.Naparstek Y., Cohen I.R., Fuks Z., Vlodavsky I. Activated T lymphocytes produce a matrix degrading heparin sulphate endoglycosidase. Nature (Lond.) 1984;310:241–244. doi: 10.1038/310241a0. [DOI] [PubMed] [Google Scholar]
  • 170.Nathanson J.A., Chun L.Y. Immunological defense of the brain: role of the choroid plexus. Soc. Neurosci. Abstr. 1986;12:342.2. [Google Scholar]
  • 171.Nedwin G.E., Svedersky L.P., Bringman T.S., Palladino M.A., Goeddel D.V. Effect of interleukin 2, interferon-γ and mitogens on the production of tumor necrosis factor α and β. J. Immunol. 1985;135:2492–2496. [PubMed] [Google Scholar]
  • 172.Nicholas M.K., Antel J.P., Stefansson K., Arnason B.G.W. Rejection of fetal neocortical neural transplants by H-2 incompatible mice. J. Immunol. 1987;139:2275–2283. [PubMed] [Google Scholar]
  • 173.Niederkorn J.Y., Streilein J.W. Alloantigens placed into the anterior chamber of the eye induce specific suppression of delayed-type hypersensitivity but normal cytotoxic T lymphocytes and helper T lymphocyte responses. J. Immunol. 1983;131:2670–2674. [PubMed] [Google Scholar]
  • 174.Nilsson O.G., Brundin P., Widner H., Strecker R.E., Björklund A. Human fetal basal forebrain neurons grafted to the denervated rat hippocampus produce an organotypic cholinergic reinnervation pattern. Brain Res. 1988;456:193–198. doi: 10.1016/0006-8993(88)90363-0. [DOI] [PubMed] [Google Scholar]
  • 175.Nisbet N.W., Simonsen M., Zaleski M. The frequency of antigen-sensitive cells in tissue transplantation. J. Exp. Med. 1969;129:459–467. doi: 10.1084/jem.129.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Noma Y., Sideras P., Naito T., Bergstedt-Lindquist S., Azuma S., Severingson E., Tanabe T., Kinashi T., Matsuda F., Yaoita Y., Honjo T. Cloning of cDNA encoding the murine IgG1 induction factor by a novel strategy using SP6 promoter. Nature (Lond.) 1986;319:640–644. doi: 10.1038/319640a0. [DOI] [PubMed] [Google Scholar]
  • 177.Nossal G.J. Cellular mechanisms of immunologic tolerance. Annu. Rev. Immunol. 1983;1:33–62. doi: 10.1146/annurev.iy.01.040183.000341. [DOI] [PubMed] [Google Scholar]
  • 178.Oldendorf W.H. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol. 1973;224:1450–1453. doi: 10.1152/ajplegacy.1973.224.6.1450. [DOI] [PubMed] [Google Scholar]
  • 179.Oldendorf W.H., Brown W.J. Vol. 149. 1975. Greater number of capillary endothelial cell mitrochondria in brain than in muscle; pp. 736–738. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  • 180.Oldstone M.B., Blount P., Southern P.J., Lampert P.W. Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature (Lond.) 1986;321:239–243. doi: 10.1038/321239a0. [DOI] [PubMed] [Google Scholar]
  • 181.Olson L., Seiger Å., Strömberg I. Intraocular transplantations in rodents. A detailed account of the procedure and example of its use in neurobiology with special reference to brain tissue grafting. In: Federoff S., Hertz L., editors. Vol. 4. Academic; New York: 1983. pp. 407–442. (Adv. Cellular Neurobiology). [Google Scholar]
  • 182.Olson L., Backlund E.-O., Freed W.J., Herrera-Marschitz M., Hoffer B., Seiger Å., Strömberg I. Transplantation of mono-amine producing cell systems in oculo and intracranially: experiments in search of a treatment for Parkinson's disease. Ann. N.Y. Acad. Sci. 1985;457:105–126. doi: 10.1111/j.1749-6632.1985.tb20801.x. [DOI] [PubMed] [Google Scholar]
  • 183.Oppenheim J.J., Kovacs E.J., Matsushima K., Durum S.K. There is more than one interleukin-1. Immunol. Today. 1986;7:45–56. doi: 10.1016/0167-5699(86)90124-6. [DOI] [PubMed] [Google Scholar]
  • 184.Pardridge M.W. UCLA conference. Vol. 105. 1986. Blood-brain barrier: interface between internal medicine and the brain; pp. 82–95. (Ann. Intern. Med.). [DOI] [PubMed] [Google Scholar]
  • 185.Parwaresch M.R., Horny H.-P., Lennert K. Tissue mast cell in health and disease. Pathol. Res. Pract. 1985;179:439–461. doi: 10.1016/s0344-0338(85)80184-9. [DOI] [PubMed] [Google Scholar]
  • 186.Perlow M.J., Freed W.J., Hoffer B.J., Seiger Å., Olson L., Wyatt R.J. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science. 1979;204:643–647. doi: 10.1126/science.571147. [DOI] [PubMed] [Google Scholar]
  • 187.Perlow M.J., Kumakura K., Guidotti A. Vol. 77. 1980. Prolonged survival of bovine adrenal chromaffin cells in rat cerebral ventricles; pp. 5278–5281. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Perry V.H., Hume D.A., Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing brain. Neuroscience. 1985;15:313–326. doi: 10.1016/0306-4522(85)90215-5. [DOI] [PubMed] [Google Scholar]
  • 189.Philip R., Epstein L.B. Tumour necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, γ-interferon and interleukin-1. Nature (Lond.) 1986;323:86–89. doi: 10.1038/323086a0. [DOI] [PubMed] [Google Scholar]
  • 190.Ponnappan U., Cinander B., Gerber V., Blaser K. Antibody response and aquired tolerance of A/J mice: age and immunogen-related isotype differences. Scand. J. Immunol. 1988;27:419–425. doi: 10.1111/j.1365-3083.1988.tb02366.x. [DOI] [PubMed] [Google Scholar]
  • 191.Prehn R.T. Do tumors grow because of the immune response of the host. Transpl. Rev. 1976;28:33–42. doi: 10.1111/j.1600-065x.1976.tb00191.x. [DOI] [PubMed] [Google Scholar]
  • 192.Prineas J.W. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science. 1979;203:1123–1125. doi: 10.1126/science.424741. [DOI] [PubMed] [Google Scholar]
  • 193.Raine C.S., Mokhtarian F., McFarlin D.E. Adoptively transferred chronic relapsing experimental autoimmune encephalomyelitis in the mouse. Neuropathological analysis. Lab. Invest. 1984;51:534–546. [PubMed] [Google Scholar]
  • 194.Raju S., Grogan J.B. Vol. 9. 1977. Immunological study of the brain as a privileged site; pp. 1187–1191. (Transpl. Proc.). [PubMed] [Google Scholar]
  • 195.Rapoport S.I. Raven; New York: 1976. Blood-Brain Barrier in Physiology and Medicine; pp. 1–315. [Google Scholar]
  • 196.Redmond D.E., Sladek J.R., Roth R.H., Collier T.J., Elsworth J.D., Deutch A.Y., Haber S. Fetal neuronal grafts in monkeys given metylphenyltetrahydropyridine. Lancet. 1986;I 8490:1125–1127. doi: 10.1016/s0140-6736(86)91839-8. [DOI] [PubMed] [Google Scholar]
  • 197.Reese T.S., Karnovsky M.J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 1967;34:207–217. doi: 10.1083/jcb.34.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Revel M., Chebath J. Interferon-activated genes. Trend Biol. Sci. 1986;11:166–170. [Google Scholar]
  • 199.Ridley A., Cavanagh J.B. The cellular reactions to heterologous, homologous and autologous skin implanted into brain. J. Pathol. 1969;99:193–203. doi: 10.1002/path.1710990303. [DOI] [PubMed] [Google Scholar]
  • 200.Robbins D.S., Shiazi Y., Drysdale B.-E., Lieberman E., Shin H.S., Shin M.L. Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J. Immunol. 1987;139:2593–2597. [PubMed] [Google Scholar]
  • 201.Roser B., Dorsch S. The cellular basis of ransplantation tolerance in the rat. Immunol. Rev. 1979;46:55–85. doi: 10.1111/j.1600-065x.1979.tb00284.x. [DOI] [PubMed] [Google Scholar]
  • 202.Rosenstein J.M. Neocortical transplants in the mammalian brain lack a blood-brain barrier to macromolecules. Science. 1987;235:772–774. doi: 10.1126/science.2433767. [DOI] [PubMed] [Google Scholar]
  • 203.Ross R., Raines E.W., Bowen-Pope D.F. The biology of platelet-derived growth factor. Cell. 1986;46:155–169. doi: 10.1016/0092-8674(86)90733-6. [DOI] [PubMed] [Google Scholar]
  • 204.Roszman T.L., Brooks W.H. Neurol modulation of immune function. J. Neuroimmunol. 1985;10:59–69. doi: 10.1016/0165-5728(85)90034-7. [DOI] [PubMed] [Google Scholar]
  • 205.Ruddle N.H. Tumor necrosis factor and related cytotoxins. Immunol. Today. 1987;8:129–130. [Google Scholar]
  • 206.Sachs D.H., Winn H.J., Russel P.S. The immunologic response to xenografts. Recognition of mouse H-2 histocompatibility antigens by the rat. J. Immunol. 1971;107:481–492. [PubMed] [Google Scholar]
  • 207.Sandberg-Wollheim M., Zweiman B., Levinson A.I., Lisak R.P. Humoral immune responses within the human central nervous system following systemic immunization. J. Neuroimmunol. 1986;11:205–214. doi: 10.1016/0165-5728(86)90004-4. [DOI] [PubMed] [Google Scholar]
  • 208.Sandvig S., Laskey T., Andersson J., De Ley M., Andersson U. Gamma-interferon is produced by CD3 + and CD3- lymphocytes. Immunol. Rev. 1987;97:51–65. doi: 10.1111/j.1600-065x.1987.tb00516.x. [DOI] [PubMed] [Google Scholar]
  • 209.Scheinberg L.C., Edelman F.L., Levy A.W. Is the brain an immunologically privileged site? I. Studies based on intracerebral tumor transplantation and isotransplantation to sensitized hosts. Arch. Neurol. 1964;11:248–264. doi: 10.1001/archneur.1964.00460210026003. [DOI] [PubMed] [Google Scholar]
  • 210.Scheinberg L.C., Kotsilimbas D.G., Karpf R., Mayer M. Is the brain an immunologically privileged site? III. Arch. Neurol. 1966;15:62–67. doi: 10.1001/archneur.1966.00470130066006. [DOI] [PubMed] [Google Scholar]
  • 211.Schmidt R.H., Ingvar M., Lindvall O., Stenevi U., Björklund A. Functional activity of substantia nigra grafts reinnervating the striatum: neurotransmitter metabolism and (14C)-2-deoxy-d-glucose autoradiography. J. Neurochem. 1982;38:737–748. doi: 10.1111/j.1471-4159.1982.tb08693.x. [DOI] [PubMed] [Google Scholar]
  • 212.Schnyder B., Weber E., Fontana A. On the role of astrocytes in polyclonal T cell activation. J. Neuroimmunol. 1986;10:209–218. doi: 10.1016/0165-5728(86)90103-7. [DOI] [PubMed] [Google Scholar]
  • 213.Schrader J.W. The panspecific hemopoietin of activated T lymphocytes. Annu. Rev. Immunol. 1986;4:205–230. doi: 10.1146/annurev.iy.04.040186.001225. [DOI] [PubMed] [Google Scholar]
  • 214.Seiger Å., Oison L. Quantification of fiber growth in transplanted central monoamine neurons. Cell Tissue Res. 1977;179:285–316. doi: 10.1007/BF00221102. [DOI] [PubMed] [Google Scholar]
  • 215.Shen A.L., Hu C., Hisa R. Cellular and antigenic properties of cultured normal and fetal brain and glioma cells. J. Neuroimmunol. 1985;8:141–151. doi: 10.1016/s0165-5728(85)80054-0. [DOI] [PubMed] [Google Scholar]
  • 216.Sherwood R.A., Brent L., Rayfield L.S. Vol. 19. 1987. Major histocompatibility complex antigens are presented by murine host accessory cells; pp. 239–241. (Transpl. Proc.). [PubMed] [Google Scholar]
  • 217.Shevach E.M. The effects of cyclosporin A on the immune system. Annu. Rev. Immunol. 1985;3:397–423. doi: 10.1146/annurev.iy.03.040185.002145. [DOI] [PubMed] [Google Scholar]
  • 218.Shimuzu K., Tsuda N., Matsui Y., Okamoto Y., Miyao Y., Tamura K., Nakatani S., Mogami H. Surgical trials on treatment of Parkinson's disease in mice. Soc. Neurosci. Abstr. 1987:219.1. [Google Scholar]
  • 219.Shirai Y. Transplantation of the rat sarcoma in adult heterogenous animals. Japn. Med. World. 1921;1:14–15. [Google Scholar]
  • 220.Siebert W.J. Vol. 26. 1928. Auto and homeotransplantation of thyroid gland into brain of guinea pigs; pp. 236–237. (Proc. Soc. Exp. Biol. Med.). [Google Scholar]
  • 221.Silvers W.K., Bartlett S.T., Chen H., Fleming H.L., Naji A., Barker C.F. Major histocompatibility complex restriction and transplantation immunity. A possible solution to the allograft problem. Transplantation. 1984;37:28–32. [PubMed] [Google Scholar]
  • 222.Simonsen M. Graft versus host reactions. Their natural history, and applicability as tools of research. Prog. Allerg. 1962;6:349–367. [PubMed] [Google Scholar]
  • 223.Sladek J.R., Collier T.J., Haber S.N., Roth R.H., Redmond D.E. Survival and growth of fetal catecholamine neurons grafted into primate brain. Brain Res. Bull. 1986;17:809–818. doi: 10.1016/0361-9230(86)90092-4. [DOI] [PubMed] [Google Scholar]
  • 224.Smith F.I., Miller J.F.A.P. Delayed hypersensitivity to allogeneic cells in mice. III. J. Exp. Med. 1979;150:965–976. doi: 10.1084/jem.150.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Smith K.A. Interleukin 2. Annu. Rev. Immunol. 1984;2:319–334. doi: 10.1146/annurev.iy.02.040184.001535. [DOI] [PubMed] [Google Scholar]
  • 226.Snell G.D. The homograft reaction. Annu. Rev. Microbiol. 1957;11:439–458. doi: 10.1146/annurev.mi.11.100157.002255. [DOI] [PubMed] [Google Scholar]
  • 227.Sorg B.A., Smith M.M., Campagnoni A.T. Developmental expression of the myelin proteolipid protein and basic protein mRNA in normal and dysmyelinating mutant mice. J. Neurochem. 1987;49:1146–1154. doi: 10.1111/j.1471-4159.1987.tb10005.x. [DOI] [PubMed] [Google Scholar]
  • 228.Steinman R.M., Nussenzweig M.C. Dendritic cells: features and functions. Immunol. Rev. 1980;53:127–147. doi: 10.1111/j.1600-065x.1980.tb01042.x. [DOI] [PubMed] [Google Scholar]
  • 229.Steinmuller D. Vol. 11. 1979. Methods for induction of permanent graft survival; pp. 1198–1206. (Transpl. Proc.). [PubMed] [Google Scholar]
  • 230.Steinmuller D. Which T cells mediate allograft rejection? Transplantation. 1985;40:229–233. doi: 10.1097/00007890-198509000-00001. [DOI] [PubMed] [Google Scholar]
  • 231.Stenevi U., Kromer L.F., Gage F.H., Björklund A. Solid neural grafts in intracerebral transplantation cavities. In: Björklund A., Stenevi U., editors. Neural Grafting in the Mammalian CNS. Elsevier; Amsterdam: 1985. pp. 41–51. [Google Scholar]
  • 232.Stepkowski S., Duncan W.R. The role of TDTH and TC populations in organ graft rejection. Transplantation. 1986;42:406–412. doi: 10.1097/00007890-198610000-00016. [DOI] [PubMed] [Google Scholar]
  • 233.Stewart P.A., Wiley M.J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev. Biol. 1981;84:183–192. doi: 10.1016/0012-1606(81)90382-1. [DOI] [PubMed] [Google Scholar]
  • 234.Stewart P.A., Clements L.G., Wiley M.J. Revascularization of skin transplanted into the brain: source of the graft endothelium. Microvasc. Res. 1984;28:113–124. doi: 10.1016/0026-2862(84)90033-5. [DOI] [PubMed] [Google Scholar]
  • 235.Streilein J.W., Niederkorn J.Y. Characterization of the suppressor cell(s) responsible for anterior chamber-associated immune deviation (ACAID) induced in BALB/c mice by P815 cells. J. Immunol. 1985;134:1381–1387. [PubMed] [Google Scholar]
  • 236.Strömberg L., Herrera-Marschitz M., Ungerstedt U., Ebendal T., Olson L. Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects of NGF on graft survival, fiber growth and rotational behavior. Exp. Brain Res. 1985;60:335–349. doi: 10.1007/BF00235929. [DOI] [PubMed] [Google Scholar]
  • 237.Strömberg I., Bygdeman M., Goldstein M., Seiger Å., Olson L. Human fetal substantia nigra grafted to dopamine-denervated striatum of immunosuppressed rats: evidence for functional reinnervation. Neurosci. Lett. 1986;71:271–276. doi: 10.1016/0304-3940(86)90632-4. [DOI] [PubMed] [Google Scholar]
  • 238.Summers B.A., Greisen H.A., Appel M.J.G. Possible initiation of viral encephalomyelitis in dogs by migrating lymphocytes infected with distemper virus. Lancet. 1978;II 8082:187–189. doi: 10.1016/s0140-6736(78)91924-4. [DOI] [PubMed] [Google Scholar]
  • 239.Suzumura A., Lavi E., Weiss S.R., Silberberg D.H. Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. Science. 1986;232:991–993. doi: 10.1126/science.3010460. [DOI] [PubMed] [Google Scholar]
  • 240.Suzumura A., Silberberg D.H., Lisak R.P. The expression of MHC antigens on oligodendrocytes: induction of polymorphic H-2 expression by lymphokines. J. Neuroimmunol. 1986;11:179–190. doi: 10.1016/0165-5728(86)90002-0. [DOI] [PubMed] [Google Scholar]
  • 241.Svendgaard N.A., Björklund A., Hardebo J.E., Stenevi U. Axonal degeneration associated with a defective blood-brain barrier in cerebral implants. Nature (Lond.) 1975;255:334–336. doi: 10.1038/255334a0. [DOI] [PubMed] [Google Scholar]
  • 242.Swensen R.B., Sörensen J.C., Zimmer J., Castro A.J. Neocortical transplants grafted into the newborn rat brain demonstrates a blood-brain barrier to macromolecules. Soc. Neurosci. Abstr. 1987:81.16. doi: 10.1016/0304-3940(89)90656-3. [DOI] [PubMed] [Google Scholar]
  • 243.Szentistvanyi I., Patlak C.S., Ellis R.A., Cserr H.F. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 1984;246:F835–F844. doi: 10.1152/ajprenal.1984.246.6.F835. (Renal Fluid Electrolyte Physiol. 15) [DOI] [PubMed] [Google Scholar]
  • 244.Tedeschi B., Barrett J.N., Keane R.W. Astrocytes produce interferon that enhances the expression of H-2 antigens on a subpopulation of brain cells. J. Cell Biol. 1986;102:2244–2253. doi: 10.1083/jcb.102.6.2244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Thompson W.G. Successful brain grafting. N.Y. Med. J. 1890;51:701–702. [Google Scholar]
  • 246.Thurman G.B., Braude I.A., Gray P.W., Oldham R.K., Stevenson H.C. MIF-like activity of natural and recombinant human interferon-γ and their neutralization by monoclonal antibody. J. Immunol. 1985;134:305–309. [PubMed] [Google Scholar]
  • 247.Tilney N.L., Gowans J.L. The sensitization of rats by allografts transplanted to alymphatic pedicles of skin. J. Exp. Med. 1970;133:951–962. doi: 10.1084/jem.133.5.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Traugott U., Scheinberg L., Raine C. On the-presence of Ia-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. J. Neuroimmunol. 1985;8:1–14. doi: 10.1016/s0165-5728(85)80043-6. [DOI] [PubMed] [Google Scholar]
  • 249.Trotter J., Steinman L. Homing of Lyt-2+ and Lyt-2− T-cell subsets and B lymphocytes to the central nervous system of mice with acute experimental allergic encephalomyelitis. J. Immunol. 1984;132:2919–2923. [PubMed] [Google Scholar]
  • 250.Tulipan N.B., Huang S., Allen G.S. Pituitary transplantation: cyclosporin enables transplantation across a minor histocompatibility barrier. Neurosurgery. 1986;18:316–322. doi: 10.1227/00006123-198603000-00010. [DOI] [PubMed] [Google Scholar]
  • 251.Tze W.H., Tai J. Intracerebral allotransplantation of purified pancreatic endocrine cells and pancreatic islets in diabetic rats. Transplantation. 1984;38:107–111. doi: 10.1097/00007890-198408000-00003. [DOI] [PubMed] [Google Scholar]
  • 252.Unanue E.R. Antigen-presenting function of the macrophage. Annu. Rev. Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
  • 253.Unanue E.R., Allen P.M. The basis for the immunoregulatory role of macrophages and other accessory cells. Science. 1987;236:551–557. doi: 10.1126/science.2437650. [DOI] [PubMed] [Google Scholar]
  • 254.Ungerstedt U., Arbuthnott G.W. Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res. 1970;24:485–493. doi: 10.1016/0006-8993(70)90187-3. [DOI] [PubMed] [Google Scholar]
  • 255.Vass K., Lassmann H., Wiesniewski H.M., Iqbal K. Ultrachemical distribution of myelin basic protein after injection into the cerebrospinal fluid. Evidence for transport through the blood-brain barrier and binding to the luminal surface of cerebral veins. J. Neurol. Sci. 1984;63:423–433. doi: 10.1016/0022-510x(84)90165-5. [DOI] [PubMed] [Google Scholar]
  • 256.Vinogradova O.S., Bragin A.G., Kitchigina V.F. Spontaneous and evoked activity of neurons in intrabrain allo- and xenografts of the hippocampus and septum. In: Björklund A., Stenevi U., editors. Neural Grafting in the Mammalian CNS. Elsevier; Amsterdam: 1985. pp. 409–421. [Google Scholar]
  • 257.Walford R.L. Avon; New York: 1983. Maximum Lifespan; pp. 1–256. [Google Scholar]
  • 258.Webb M., Barclay A.N. Localization of the MRC Ox-2 glucoprotein on the surface of neurones. J. Neurochem. 1984;43:1061–1067. doi: 10.1111/j.1471-4159.1984.tb12844.x. [DOI] [PubMed] [Google Scholar]
  • 259.Weiss A., Imboden J., Hardy K., Manger B., Terhorst C., Stobo J. The role of the T3/antigen receptor complex in T-cell activation. Annu. Rev. Immunol. 1986;4:539–620. doi: 10.1146/annurev.iy.04.040186.003113. [DOI] [PubMed] [Google Scholar]
  • 260.Wekerle H., Linington C., Lassmann H., Meyerman R. Cellular immune reactivity within the CNS. Trends Neurosci. 1986;6:271–277. [Google Scholar]
  • 261.Whetton A.D., Dexter T.M. Haemopoietic growth factors. Trends Biol. Sci. 1986;11:207–211. [Google Scholar]
  • 262.Widner H., Johansson B.B., Möller G. Qualitative demonstration of a link between brain parenchyma and the lymphatic system after intracerebral antigen deposition. J. Cerebr. Blood Flow Metab. 1985;5:88–89. [Google Scholar]
  • 263.Widner, H., Brundin, P., Björklund, A. and Möller, E., Survival and host immunization of allogeneic fetal neural dopamine cell suspension grafts implanted into the brains of adult mice, Exp. Brain Res., in press. [DOI] [PubMed]
  • 264.Widner, H., Johansson, B. B. and Möller, G., Immune response in deep cervical lymph nodes and spleen in the mouse after intracerebral antigen deposition, Scand. J. Immunol., in press. [DOI] [PubMed]
  • 265.Widner H., Jönsson B.-A., Hallstadius L., Wingårdh K., Strand S.E., Johansson B.B. Scintigraphic method to quantify the passage from brain parenchyma to the deep cervical lymph nodes in the rat. Eur. J. Nucl. Med. 1988;13:456–461. doi: 10.1007/BF00281860. [DOI] [PubMed] [Google Scholar]
  • 266.Willis R.A. Vol. 117. 1935. Experiments on the intracerebral implantation of embryo tissues in rats; pp. 400–412. (Proc. R. Soc. Lond. Ser. B). [Google Scholar]
  • 267.Wolff J. Elektronmikroskopische Untersuchungen über die Vesikulationen in Kapillarendotel. Z. Zeuforsch. 1966;73:143–164. [Google Scholar]
  • 268.Wong O.H., Bartlett P.F., Clark-Lewis I., Battye F., Schrader J.W. Inducible expression of H-2 and Ia antigens on brain cells. Nature (Lond.) 1984;310:688–691. doi: 10.1038/310688a0. [DOI] [PubMed] [Google Scholar]
  • 269.Zimmer J. Lesion-induced reorganization of central nervous connections, with a note on central nervous transplants. In: van Hof M.W., Mohn G., editors. Functional Recovery from Brain Damage. Elsevier/North-Holland; Amsterdam: 1981. pp. 289–304. [Google Scholar]
  • 270.Zinkernagel R.M., Doherty P. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv. Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]

Articles from Brain Research Reviews are provided here courtesy of Elsevier

RESOURCES