Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Jun 10;295(1):160–171. doi: 10.1006/viro.2002.1391

Communication between S1N330 and a Region in S2 of Murine Coronavirus Spike Protein Is Important for Virus Entry into Cells Expressing CEACAM1b Receptor

Shutoku Matsuyama 1, Fumihiro Taguchi 1,1
PMCID: PMC7133742  PMID: 12033774

Abstract

The soluble receptor-resistant (srr) mutants, srr7 and srr11, isolated from a murine coronavirus, mouse hepatitis virus (MHV) JHMV, have an amino acid mutation at positions 1114 (Leu to Phe) and 65 (Leu to His), respectively, in the spike (S) protein. These mutants failed to efficiently infect BHK cells expressing CEACAM1b (BHK-R2), due to their low entry into this cell line, although they infected cells expressing CEACAM1a (BHK-R1) in a manner similar to that of wild-type (wt) JHMV cl-2 (Matsuyama and Taguchi, Virology 273, 80–89, 2000). Following the repeated passage of these mutants through BHK-R2 cells, viruses were no longer isolated from srr11-infected cells, while two distinct mutants, srr7A and srr7B, were obtained from srr7-infected cells. Srr7A and srr7B grew 2 log10 higher than srr7 and induced fusion in BHK-R2 cells, being similar to wt virus. In addition to the amino acid change at position 1114 that stemmed from parental srr7, srr7A and srr7B had mutations around position 280, corresponding to the third region of the S1N330 receptor-binding site (S1N330-III) common to all MHV strains examined thus far. Srr7A and srr7B S proteins showed high fusogenicity in both BHK-R1 and BHK-R2 cells, like the wt virus, while srr7Aa and srr7Ba S proteins, which had mutations in S1N330-III but not at amino acid 1114, exhibited profoundly reduced fusion activity in these cell lines. These findings suggest that communication between S1N330-III and the amino acid at position 1114 is important for efficient fusion activity in BHK-R2 cells. S1N330-III is a possible region in the S1 involved in viral entry into cells.

References

REFERENCES

  • 1.Aoki Y., Aizaki H., Shimoike T., Tani H., Ishii K., Saito I., Matsuura Y., Miyamura T. A human liver cell line exhibits efficeint translation of HCV RNAs produced by a recombinant adenovirus expressing T7 RNA polymerase. Virology. 1998;250:140–150. doi: 10.1006/viro.1998.9361. [DOI] [PubMed] [Google Scholar]
  • 2.Beauchemin Nomenclature announcement. Redefined nomenclature for members of the carcinoembryonic antigen family. Exp. Cell Res. 1999;252:243–249. doi: 10.1006/excr.1999.4610. [DOI] [PubMed] [Google Scholar]
  • 3.Castro R.F., Perlman S. CD8+ T cell epitopes within the surface glycoprotein of a neurotropic coronavirus and correlation with pathogenicity. J. Virol. 1995;69:8127–8131. doi: 10.1128/jvi.69.12.8127-8131.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Chen D.S., Asanaka M., Yokomori K., Wang F., Hwang S.B., Li H., Lai M.M.C. A pregnancy-specific glycoprotein is expressed in the brain and serves as a receptor for mouse hepatitis virus. Proc. Natl. Acad. Sci. USA. 1995;92:12095–12099. doi: 10.1073/pnas.92.26.12095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Colston E., Racaniello V.R. Soluble receptor-resistant poliovirus mutants identify surface and internal capsid residues that control interaction with the cell receptor. EMBO J. 1994;13:5855–5862. doi: 10.1002/j.1460-2075.1994.tb06930.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Dalziel R.G., Lampert P.W., Talbot P.J., Buchmeier M.J. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J. Virol. 1986;59:463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Damico R.L., Crane J., Bates P. Receptor-triggered membrane association of a model retroviral glycoprotein. Proc. Natl. Acad. Sci. USA. 1998;95:2580–2585. doi: 10.1073/pnas.95.5.2580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.De Groot R.J., Luytjes W., Horzinek M.C., Van der Zeijst B.A.M., Spaan W.J.M., Lenstra J.A. Evidence for a coiled-coil structure in the spike of coronaviruses. J. Mol. Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Dveksler G.S., Diffenbach C.W., Cardellichio C.B., Mccuaig K., Pensiero M.N., Jiang G.S., Beauchemin N., Holmes K.V. Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J. Virol. 1993;67:1–8. doi: 10.1128/jvi.67.1.1-8.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Dveksler G.S., Pensiero M.N., Cardellichio C.B., Williams R.K., Jiang G., Holmes K.V., Diffenbach C.W. Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J. Virol. 1991;65:6881–6891. doi: 10.1128/jvi.65.12.6881-6891.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Fleming J.O., Trousdale M.D., El-Zaatari F.A.K., Stohlman S.A., Weiner L.P. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J. Virol. 1986;58:869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Flory E., Pfleiderer M., Stuhler A., Wege H. Induction of protective immunity against coronavirus-induced encephalomyelitis: Evidence for an important role of CD8+ T cells in vivo. Eur. J. Immunol. 1993;23:1757–1761. doi: 10.1002/eji.1830230804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Fuerst T.R., Niles E.G., Studier F.W., Moss B. Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes T7 RNA polymerase. Proc. Natl. Acad. Sci. USA. 1986;83:8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Gallagher T.M. Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein. J. Virol. 1996;70:4683–4690. doi: 10.1128/jvi.70.7.4683-4690.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Gallagher T.M., Escarmis C., Buchmeier M.J. Alteration of the pH dependence of coronavirus-induced cell fusion: Effect of mutations in the spike glycoprotein. J. Virol. 1991;65:1916–1938. doi: 10.1128/jvi.65.4.1916-1928.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Grosse B., Siddell S.G. Single amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by S1-specific monoclonal antibody. Virology. 1994;202:814–824. doi: 10.1006/viro.1994.1403. [DOI] [PubMed] [Google Scholar]
  • 18.Ikeda H., Kato K., Suzuki T., Kitani H., Matsubara Y., Takase-Yoden S., Watanabe R., Kitagawa M., Aizawa S. Properties of the naturally occurring soluble surface glycoprotein of ecotropic murine leukemia virus: Binding specificity and possible conformational change after binding to receptor. J. Virol. 2000;74:1815–1826. doi: 10.1128/jvi.74.4.1815-1826.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kaplan G., Peters D., Racaniello V.R. Poliovirus mutants resistant to neutralization with soluble receptors. Science. 1990;250:1596–1599. doi: 10.1126/science.2177226. [DOI] [PubMed] [Google Scholar]
  • 20.Krueger D.K., Kelly S.M., Lewicki D.N., Ruffolo R., Gallagher T.M. Variations in disparate regions of the murine coronavius spike protein impact the initiation of membrane fusion. J. Virol. 2001;75:2792–2802. doi: 10.1128/JVI.75.6.2792-2802.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kubo H., Yoden-Takase S., Taguchi F. Neutralization and fusion inhibition activities of monoclonal antibodies specific for the S1 subunit of spike protein of neurovirulent JHMV cl-2 variant. J. Gen. Virol. 1993;74:1421–1425. doi: 10.1099/0022-1317-74-7-1421. [DOI] [PubMed] [Google Scholar]
  • 22.Kubo H., Yamada Y.K., Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J. Virol. 1994;68:5403–5410. doi: 10.1128/jvi.68.9.5403-5410.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kumanishi T. Brain tumors induced with Rous sarcoma virus, Schmidt-Ruppin strain. 1. Induction of brain tumors in adult mice with Rous chicken sarcoma cells. Jpn. J. Exp. Med. 1967;37:461–474. [PubMed] [Google Scholar]
  • 24.Kunita S., Zhang L., Homberger F.R., Compton S.R. Molecular characterization of the S proteins of two enterotropic murine coronavirus strains. Virus Res. 1995;35:277–289. doi: 10.1016/0168-1702(94)00089-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.La Monica N., Banner L.R., Morris V.L., Lai M.M.C. Localization of extensive deletions in the structural genes of two neurotropic variants of murine coronavirus JHM. Virology. 1991;182:883–888. doi: 10.1016/0042-6822(91)90635-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Luo Z., Matthews A.M., Weiss S.R. Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion. J. Virol. 1999;73:8152–8159. doi: 10.1128/jvi.73.10.8152-8159.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Luo Z., Weiss S. Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein. Virology. 1998;244:483–494. doi: 10.1006/viro.1998.9121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., van der Zeust B.A.M., Horzinek M.C., Spaan W.J.M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Matsubara Y., Watanabe R., Taguchi F. Neurovirulence of six different murine coronavirus JHMV variants for rats. Virus Res. 1991;20:45–58. doi: 10.1016/0168-1702(91)90060-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Matsuyama S., Taguchi F. Impaired entry of soluble receptor-resistant mutants of mouse hepatitis virus into cells expressing MHVR2 receptor. Virology. 2000;273:80–89. doi: 10.1006/viro.2000.0409. [DOI] [PubMed] [Google Scholar]
  • 31.Matsuyama S., Watanabe R., Taguchi F. Neurovirulence in mice of soluble receptor-resistant (srr) mutants of mouse hepatitis virus: Intensive apoptosis caused by less virulent srr mutants. Arch. Virol. 2001;146:1643–1654. doi: 10.1007/s007050170053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.McKeating J., Balfe P., Clapham P., Weiss R.A. Recombinant CD4-selected human immunodeficiency virus type 1 variants with reduced gp120 affinity for CD4 and increased cell fusion capacity. J. Virol. 1991;65:4777–4785. doi: 10.1128/jvi.65.9.4777-4785.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Nedellec P., Dveksler G.S., Daniels E., Turbide E., Chow B., Basile A.A., Holmes K.V., Beauchemin N. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. J. Virol. 1994;68:4525–4537. doi: 10.1128/jvi.68.7.4525-4537.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Nussbaum O., Broder C.C., Berger E.A. Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J. Virol. 1994;68:5411–5422. doi: 10.1128/jvi.68.9.5411-5422.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Ohtsuka N., Taguchi F. Mouse susceptibility to mouse hepatitis virus infection links with viral receptor genotype. J. Virol. 1997;71:8860–8863. doi: 10.1128/jvi.71.11.8860-8863.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Ohtsuka N., Yamada Y.K., Taguchi F. Difference of virus-binding activity of two receptor proteins for mouse hepatitis virus. J. Gen. Virol. 1996;77:1683–1692. doi: 10.1099/0022-1317-77-8-1683. [DOI] [PubMed] [Google Scholar]
  • 37.Parker S.E., Gallagher T.M., Buchmeier M.J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989;173:664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Phillips J.J., Chua M.M., Lavi E., Weiss S. Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: The murine coronavirus spike protein is a major determinant of neurovirulence. J. Virol. 1999;73:7752–7760. doi: 10.1128/jvi.73.9.7752-7760.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Rao P.V., Kumari S., Gallagher T.M. Identification of a contiguous 6-residue determinant in the MHV receptor that controls the level of virion binding to cells. Virology. 1997;229:336–348. doi: 10.1006/viro.1997.8446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Routledge E., Stauber R., Pfleiderer M., Siddell S.G. Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. J. Virol. 1991;65:254–262. doi: 10.1128/jvi.65.1.254-262.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Saeki K., Ohtsuka N., Taguchi F. Identification of spike protein residues of murine coronavirus responsible for receptor-binding activity by use of soluble receptor-resistant mutants. J. Virol. 1997;71:9024–9031. doi: 10.1128/jvi.71.12.9024-9031.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Schmidt I., Skinner M., Siddell S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  • 44.Smith M.S., Click R.E., Plagemann P.G.W. Control of mouse hepatitis virus replication in macrophages by a recessive gene on chromosome 7. J. Immunol. 1984;133:428–432. [PubMed] [Google Scholar]
  • 45.Stauber R., Pfleiderer M., Siddell S. Proteolytic cleavage of the murine coronavirus surface glycoprotein is not required for fusion activity. J. Gen. Virol. 1993;74:183–191. doi: 10.1099/0022-1317-74-2-183. [DOI] [PubMed] [Google Scholar]
  • 46.Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Suzuki H., Taguchi F. Analysis of the receptor binding site of murine coronavirus spike glycoprotein. J. Virol. 1996;70:2632–2636. doi: 10.1128/jvi.70.4.2632-2636.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Taguchi F. Fusion formation by uncleaved spike protein of murine coronavirus JHMV variant cl-2. J. Virol. 1993;67:1195–1202. doi: 10.1128/jvi.67.3.1195-1202.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Taguchi F. Biological functions of mouse hepatitis virus (MHV) spike (S) protein and implication of S protein-MHV receptor interaction in virus virulence. Curr. Topics Virol. 1999;1:245–252. [Google Scholar]
  • 50.Taguchi F., Ikeda T., Shida H. Molecular cloning and expression of a spike protein of neurovirulent murine coronavirus JHMV variant cl-2. J. Gen. Virol. 1992;73:1065–1072. doi: 10.1099/0022-1317-73-5-1065. [DOI] [PubMed] [Google Scholar]
  • 51.Taguchi F., Kubo H., Takahashi H., Suzuki H. Localization of neurovirulence determinant for rats on the S1 subunit of murine coronavirus JHMV. Virology. 1995;208:67–74. doi: 10.1006/viro.1995.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Taguchi F., Matsuyama S. Soluble receptor potentiates receptor-independent infection by murine coronavirus. J. Virol. 2002;76:950–958. doi: 10.1128/JVI.76.3.950-958.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Taguchi F., Matsuyama S., Saeki K. Difference in Bgp-independent fusion activity among mouse hepatitis viruses. Arch. Virol. 1999;144:2041–2049. doi: 10.1007/s007050050725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Taguchi F., Shimazaki Y.K. Functional analysis of an epitope in the S2 subunit of murine coronavirus spike protein: Involvement in fusion activity. J. Gen. Virol. 2000;81:2867–2871. doi: 10.1099/0022-1317-81-12-2867. [DOI] [PubMed] [Google Scholar]
  • 55.Taguchi F., Siddell S.G., Wege H., ter Meulen V. Characterization of a variant virus selected in rat brain after infection by coronavirus mouse hepatitis virus JHM. J. Virol. 1985;54:429–435. doi: 10.1128/jvi.54.2.429-435.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Tsai C.W., Chang S.C., Chang M.F. A 12-amino acid stretch in the hypervariable region of the spike protein S1 subunit is critical for fusion activity of mouse hepatitis virus. J. Biol. Chem. 1999;274:26085–26090. doi: 10.1074/jbc.274.37.26085. [DOI] [PubMed] [Google Scholar]
  • 57.Wang F.-I., Hilton D.R., Gilmore W., Trousdale M.D., Fleming J.O. Sequential infection of glial cells by the murine hepatitis virus JHM strain (MHV-4) leads to a characteristic distribution of demyelination. Lab. Invest. 1992;66:744–754. [PubMed] [Google Scholar]
  • 58.Yamada Y.K., Takimoto K., Yabe M., Taguchi F. Acquired fusion activity of a murine coronavirus MHV-2 variant with mutations in the proteolytic cleavage site and the signal sequence of the S protein. Virology. 1997;227:215–219. doi: 10.1006/viro.1996.8313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Yamada Y.K., Yabe M. Sequence analysis of major structural proteins of newly isolated mouse hepatitis virus. Exp. Anim. 2000;49:61–66. doi: 10.1538/expanim.49.61. [DOI] [PubMed] [Google Scholar]
  • 60.Yokomori K., Lai M.M.C. The receptor for mouse hepatitis virus in the resistant mouse strain SJL is functional: Implication for the requirement of a second factor for virus infection. J. Virol. 1992;66:6931–6938. doi: 10.1128/jvi.66.12.6931-6938.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Zelus B.D., Wessner D.R., Williams R.K., Pensiero M.N., Phibbs F.T., deSouza M., Dveksler G.S., Holmes K.V. Purified, soluble recombinant mouse hepatitis virus receptor, Bgp1b, and Bgp2 murine coronavirus receptors differ in mouse hepatitis virus binding and neutralizing activities. J. Virol. 1998;72:7237–7244. doi: 10.1128/jvi.72.9.7237-7244.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES