Abstract
The mechanism of synthesis of the seven subgenomic mRNAs of lactate dehydrogenase-elevating virus (LDV) was explored. One proposed mechanism, leader-primed transcription, predicts the formation of free 5'-leader in infected cells which then primes reinitiation of transcription at specific complementary sites on the antigenomic template. No free LDV 5'-leader of 156 nucleotides was detected in LDV-infected macrophages. Another mechanism, independent replication of the subgenomic mRNAs, predicts the presence of negative complements to all subgenomic mRNAs in infected cells which might be generated from subgenomic mRNAs in virions. Full-length antigenomic RNA was detected in LDV-infected macrophages by Northern hybridization at a level of < 1% of that of genomic RNA, but no negative polarity subgenomic RNAs. Negative complements to all subgenomic mRNAs, however, were detected by reverse transcription of total RNA from infected macrophages using as primer an oligonucleotide complementary to the antileader followed by polymerase chain reaction amplification using this sense primer in combination with various oligonucleotide primers complementary to a segment downstream of the junction between the 5' leader and the body of each subgenomic RNA. It is unclear whether these minute amounts of negative subgenomic RNAs function in the replication of the subgenomic mRNAs. They could also be by-products of the RNA replication process. Finally, no subgenomic mRNAs were detected in LDV virions.
Keywords: Negative-strand RNA, Lactate dehydrogenase-elevating virus, Subgenomic mRNA
References
- Baric R.S., Stohlman S.A., Razavi M.K., Lai M.M.C. Characterization of leader-related small RNAs in coronavirus-infected cells: further evidence for leader-primed mechanism of transcription. Virus Res. 1985;3:19–33. doi: 10.1016/0168-1702(85)90038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinton-Darnell M., Plagemann P.G.W. Structure and chemical-physical characteristics of lactate dehydrogenase-elevating virus. J. Virol. 1975;16:420–433. doi: 10.1128/jvi.16.2.420-433.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z., Faaberg K.S., Plagemann P.G.W. Determination of the 5'-end of the lactate dehydrogenase-elevating virus (LDV) genome by two independent approaches. J. Gen. Virol. 1994;75:925–930. doi: 10.1099/0022-1317-75-4-925. [DOI] [PubMed] [Google Scholar]
- Chen Z., Kuo L., Rowland R.R.R., Even C., Faaberg K.S., Plagemann P.G.W. Sequences of 3' end of genome and of 5' end of open reading frame 1a of lactate dehydrogenase-elevating virus and common junction motifs between 5' leader and bodies of seven subgenomic mRNAs. J. Gen. Virol. 1993;74:643–660. doi: 10.1099/0022-1317-74-4-643. [DOI] [PubMed] [Google Scholar]
- De Vries A.A.F., Chirnside E.D., Horzinek M.C., Rottier P.J.M. Structural proteins of equine arteritis virus. J. Virol. 1992;66:6294–6303. doi: 10.1128/jvi.66.11.6294-6303.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fosmire J.A., Hwang K., Makino S. Identification and characterization of a coronavirus packaging signal. J. Virol. 1992;66:3522–3530. doi: 10.1128/jvi.66.6.3522-3530.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann M.A., Chang R.-Y., Ku S., Brian D.A. Leader-mRNA junction sequences are unique for each subgenomic mRNA species in the bovine coronavirus and remain so throughout persistent infection. Virology. 1993;196:163–171. doi: 10.1006/viro.1993.1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann M.A., Sethna P.B., Brian D.A. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. J. Virol. 1990;64:4108–4114. doi: 10.1128/jvi.64.9.4108-4114.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeong Y.S., Makino S. Mechanism of coronavirus transcription: duration of primary transcription initiation activity and effects of subgenomic RNA transcription on RNA replication. J. Virol. 1992;66:3339–3346. doi: 10.1128/jvi.66.6.3339-3346.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joo M., Makino S. Mutagenic analysis of the coronavirus intergenic consensus sequence. J. Virol. 1992;66:6330–6337. doi: 10.1128/jvi.66.11.6330-6337.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo L., Chen Z., Rowland R.R.R., Faaberg K.S., Plagemann P.G.W. Lactate dehydroge-nase-elevating virus (LDV): subgenomic mRNAs, mRNA leader and comparison of 3'-terminal sequences of two LDV isolates. Virus Res. 1992;23:55–72. doi: 10.1016/0168-1702(92)90067-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai M.M.C. Coronavirus: organization, replication and expression. Ann. Rev. Microbiol. 1990;44:303–333. doi: 10.1146/annurev.mi.44.100190.001511. [DOI] [PubMed] [Google Scholar]
- Lin Y.-J., Lai M.M.C. Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontiguous sequence for replication. J. Virol. 1993;67:6110–6118. doi: 10.1128/jvi.67.10.6110-6118.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino S., Joo M. Effect of intergenic consensus sequence flanking sequences on coronavirus transcription. J. Virol. 1993;67:3304–3311. doi: 10.1128/jvi.67.6.3304-3311.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meulenberg J.J.M., de Meijer E.J., Moormann R.J.M. Subgenomic RNAs of Lelystad virus contain a conserved leader-body junction sequence. J. Gen. Virol. 1993;74:1697–1701. doi: 10.1099/0022-1317-74-8-1697. [DOI] [PubMed] [Google Scholar]
- Plagemann P.G.W. Lactate dehydrogenase-elevating virus and related viruses. In: Fields B.N., Knipe D.M., Howley P.M., editors. Virology. 3rd Edition. Raven Press; New York: 1994. in press. [Google Scholar]
- Plagemann P.G.W., Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv. Virus Res. 1992;41:99–192. doi: 10.1016/S0065-3527(08)60036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rümenapf T., Strauss E.G., Strauss J.H. Subgenomic mRNA of Aura alphavirus is packaged into virions. J. Virol. 1994;68:56–62. doi: 10.1128/jvi.68.1.56-62.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawicki S.G., Sawicki D.L. Coronavirus transcription: Subgenomic mouse hepatitis virus replication intermediates function in RNA synthesis. J. Virol. 1990;64:1050–1056. doi: 10.1128/jvi.64.3.1050-1056.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sethna P.B., Hofmann M.A., Brian D.A. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J. Virol. 1991;65:320–325. doi: 10.1128/jvi.65.1.320-325.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Most R.G., Bredenbeek P.J., Spaan W.J.M. A domain at the 3' end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. J. Virol. 1991;65:3219–3226. doi: 10.1128/jvi.65.6.3219-3226.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss B., Nitschko H., Ghattas I., Wright R., Schlesinger S. Evidence for specificity in the encapsidation of Sindbis virus RNAs. J. Virol. 1989;63:5310–5318. doi: 10.1128/jvi.63.12.5310-5318.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokomori K., Banner L.R., Lai M.M.C. Coronavirus mRNA transcription: UV light transcriptional mapping studies suggest an early requirement for a genomic-length template. J. Virol. 1992;66:4671–4678. doi: 10.1128/jvi.66.8.4671-4678.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]