Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;4(2):133–143. doi: 10.1016/0168-1702(86)90037-7

Coronavirus IBV: Partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41

David Cavanagh 1, Philip J Davis 1, Darryl JC Pappin 2, Matthew M Binns 1, Michael EG Boursnell 1, TDavid K Brown 1
PMCID: PMC7133853  PMID: 3010595

Abstract

The spike protein of avian infectious bronchitis coronavirus comprises two glycopolypeptides S1 and S2 derived by cleavage of a proglycopolypeptide So, the nucleotide sequence of which has recently been determined for the Beaudette strain (Binns M.M. et al., 1985, J. Gen. Virol. 66, 719–726). The order of the two glycopolypeptides within So is aminoterminus(N)-Sl-S2-carboxyterminus(C). To locate the N-terminus of S2 we have performed partial amino acid sequencing on S2 from IBV-Beaudette labelled with [3H]serine and from the related strain IBV-M41 labelled with [3H]valine, leucine and isoleucine. The residues identified and their positions relative to the N-terminus of S2 were: serine, 13; valine, 6, 12; leucine, none in the first 20 residues; isoleucine, 2, 19. These results identified the N-terminus of S2 of IBV-Beaudette as serine, 520 residues from the N-terminus of S1, excluding the signal sequence. Immediately to the N-terminal side of residue 520 So has the sequence Arg-Arg-Phe-Arg-Arg; similar basic connecting peptides are a feature of several other virus spike glycoproteins. It was deduced that for IBV-Beaudette SI comprises 519 residues (Mr 57.0K) or 514 residues (56.2K) if the connecting peptide was to be removed by carboxypeptidase-like activity in vivo while S2 has 625 residues (69.2K). Nucleotide sequencing of the cleavage region of the So gene of IBV-M41 revealed the same connecting peptide as IBV-Beaudette and that the first 20 N-terminal residues of S2 of IBV-M41 were identical to those of the Beaudette strain. IBV-Beaudette grown in Vero cells had some uncleaved So; this was cleavable by 10 μg/ml of trypsin and of chymotrypsin.

Partial N-terminal analysis of S1 from IBV-M41 identified leucine and valine residues at positions 2 and 9 respectively from the N-terminus. This confirms the identification made by Binns et al. (1985), of the N-terminus of S1 and the end of the signal sequence of the IBV-Beaudette spike propolypeptide.

N-terminal sequencing of [3H]leucine-labelled IBV-Beaudette membrane (M) polypeptide showed leucine residues at positions 8,16 and 22 from the N-terminus; these results confirm the open reading frame identified by M.E.G. Boursnell et al. (1984, Virus Res. 1, 303–313) in the nucleotide sequence of M. The N-terminus of the nucleocapsid (n) polypeptide appeared to be blocked.

Keywords: coronavirus IBV, protein sequencing, spike, propolypeptide, cleavage

References

  1. Alonso-Caplen F.V., Matsuoka Y., Wilcox G.E., Compans R.W. Replication and morphogenesis of avian coronavirus in Vero cells and their inhibition by monensin. Virus Res. 1984;1:153–167. doi: 10.1016/0168-1702(84)90070-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biggin M.D., Gibson T.J., Hong G.F. Vol. 80. 1983. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination; pp. 3963–3965. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binns M.M., Boursnell M.E.G., Cavanagh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  4. Bosch F.X., Orlich M., Klenk H.-D., Rott R. The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology. 1979;95:197–207. doi: 10.1016/0042-6822(79)90414-8. [DOI] [PubMed] [Google Scholar]
  5. Bosch F.X., Garten W., Klenk H.-D., Rott R. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology. 1981;113:725–735. doi: 10.1016/0042-6822(81)90201-4. [DOI] [PubMed] [Google Scholar]
  6. Boursnell M.E.G., Brown T.D.K., Binns M.M. Sequence of the membrane protein gene from avian coronavirus IBV. Virus Res. 1984;1:303–313. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boursnell M.E.G., Binns M.M., Foulds I.J., Brown T.D.K. Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus. J. Gen. Virol. 1985;66:573–580. doi: 10.1099/0022-1317-66-3-573. [DOI] [PubMed] [Google Scholar]
  8. Cavanagh D. Structural polypeptides of coronavirus IBV. J. Gen. Virol. 1981;53:93–103. doi: 10.1099/0022-1317-53-1-93. [DOI] [PubMed] [Google Scholar]
  9. Cavanagh D. Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. J. Gen. Virol. 1983;64:1787–1791. doi: 10.1099/0022-1317-64-8-1787. [DOI] [PubMed] [Google Scholar]
  10. Cavanagh D. Coronavirus IBV: structural characterization of the spike protein. J. Gen. Virol. 1983;64:2577–2583. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
  11. Dalgarno L., Rice C.M, Strauss J.H. Ross River virus 26S RNA: complete nucleotide sequences and deduced sequence of the encoded structural proteins. Virology. 1983;129:170–187. doi: 10.1016/0042-6822(83)90404-x. [DOI] [PubMed] [Google Scholar]
  12. Docherty K., Steiner D.F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu. Rev. Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  13. Garoff H., Frischauf A.-M., Simons K., Lehrach H., Delius H. Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature (London) 1980;288:236–241. doi: 10.1038/288236a0. [DOI] [PubMed] [Google Scholar]
  14. Garten W., Bosch F.X., Linder D., Rott R., Klenk H.-D. Proteolytic activation of the influenza virus hemagglutinin: the structure of the cleavage site and the enzymes involved in cleavage. Virology. 1981;115:361–374. doi: 10.1016/0042-6822(81)90117-3. [DOI] [PubMed] [Google Scholar]
  15. Gething M.J., White J.M., Waterfield M.D. Vol. 75. 1978. Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequence generated during precursor activation; pp. 2737–2740. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gething M.-J., Bye J., Skehel J., Waterfield M. Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus. Nature (London) 1980;287:301–306. doi: 10.1038/287301a0. [DOI] [PubMed] [Google Scholar]
  17. Klenk H.-D., Rott R. Cotranslational and postranslational processing of viral glycoproteins. Curr. Top. Microbiol, Immunol. 1980;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  18. Laursen R.A. An automated peptide sequencer. Eur. J. Biochem. 1971;20:89–102. doi: 10.1111/j.1432-1033.1971.tb01366.x. [DOI] [PubMed] [Google Scholar]
  19. Pappin DJ.C., Findlay J.B.C. Sequence variability in the retinal-attachment domain of mammalian rhodopsins. Biochem. J. 1984;217:605–613. doi: 10.1042/bj2170605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paterson R.G., Harris T.J.R., Lamb R.A. Vol. 81. 1984. Fusion protein of the paramyxovirus simian virus 5: nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein; pp. 6706–6710. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Porter A.G., Barber C., Carey N.H., Hallewell R.A., Threlfall G., Emtage J.S. Complete nucleotide sequence of an influenza virus haemagglutinin gene from cloned DNA. Nature (London) 1979;282:471–477. doi: 10.1038/282471a0. [DOI] [PubMed] [Google Scholar]
  22. Rice CM., Strauss J.H. Vol. 78. 1981. Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins; pp. 2062–2066. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schwartz D.E., Tizard R., Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983;32:853–869. doi: 10.1016/0092-8674(83)90071-5. [DOI] [PubMed] [Google Scholar]
  25. Shinnick T.M., Lerner R.A., Sutcliffe J.G. Nucleotide sequence of Maloney murine leukaemia virus. Nature (London) 1981;293:543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  26. Siddell S., Wege H., ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  27. Skehel J.J., Waterfield M.D. Vol. 72. 1975. Studies on the primary structure of the influenza virus hemagglutinin; pp. 93–97. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stern D.F., Sefton B.M. Coronavirus proteins: biogenesis of avian infectious bronchitis virus virion proteins. J. Virol. 1982;44:794–803. doi: 10.1128/jvi.44.3.794-803.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sturman L.S., Holmes K.V. Characterisation of a coronavirus. II. Glycoproteins of the viral envelope: tryptic peptide analysis. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sturman L.S., Holmes K.V. Proteolytic cleavage of the peplomeric glycoprotein E2 of MHV yields two 90K subunits and activates cell fusion. In: Rottier P.J.M., van der Zeijst B.A.M., Spaan W.J.M., Horzinek M.C., editors. Molecular Biology and Pathogenesis of Coronaviruses. Vol. 173. Plenum Press; New York: 1984. pp. 25–36. (Advances in Experimental Medicine and Biology). [DOI] [PubMed] [Google Scholar]
  31. Wachter E., Machleidt W., Hofner H., Otto J. Aminopropyl glass and its p-phenylene diisothiocyanate derivative, a new support in solid phase Edman degradation of peptides and proteins. FEBS Lett. 1973;35:97–102. doi: 10.1016/0014-5793(73)80585-x. [DOI] [PubMed] [Google Scholar]
  32. White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Quat. Rev. Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES