Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2000 Feb 25;36(1):49–66. doi: 10.1016/0168-1702(95)00006-C

The membrane glycoprotein G1 of Uukuniemi virus contains a signal for localization to the Golgi complex

Lars Melin 1, Robert Persson 1, Agneta Andersson 1, Anita Bergström 1, Ragna Rönnholm 1, Ralf F Pettersson 1,
PMCID: PMC7133855  PMID: 7625126

Abstract

Members of the Bunyaviridae family acquire their envelopes by budding into the Golgi complex (GC). The accumulation of the membrane glycoproteins G1 and G2 in the GC probably determines the site of maturation. Here we have studied the intracellular transport and targeting to the GC of G1 and G2 of Uukuniemi virus, a member of the Phlebovirus genus, and report on their expression from cloned cDNAs either together or separately by using a T7 RNA polymerase-driven vaccinia virus expression system. When G1 and G2 were expressed together from a full-length cDNA as the p110 precursor, both proteins were localized to the Golgi complex, as evidenced by colocalization with the Golgi marker enzyme mannosidase II. Immunofluorescent staining indicated that G1 expressed alone also localized to the GC. However, pulse-chase experiments showed that G1 remained endoglycosidase H sensitive. G2 expressed alone remained associated with the endoplasmic reticulum (ER). G2 could be rescued from the ER and transported to the GC by coexpression with G1 from separate mRNAs. Coexpression also increased the efficiency of G1 transport to the GC. With none of the constructs could the glycoproteins be observed on the cell surface.

These results show that efficient export of G1 and G2 from the ER requires coexpression of both proteins, in conformity with our previous results showing that G1 and G2 from heterodimeric complexes in the ER. Since G1 expressed alone is retained in the GC, we conclude that G1 contains a retention signal for localization to the GC. G2 might thus become associated with the GC indirectly via its interaction with G1.

Keywords: Bunyaviridae, Phlebovirus, Uukuniemi virus, Golgi complex, Membrane glycoproteins, Protein transport

References

  1. Armstrong J., Patel S. The Golgi sorting domain of coronavirus E1 protein. J. Cell Sci. 1991;98:567–575. doi: 10.1242/jcs.98.4.567. [DOI] [PubMed] [Google Scholar]
  2. Boulay F., Doms R.W., Webster R.G., Helenius A. Posttranslational oligomerization and cooperative acid activation of mixed influenza hemagglutinin trimers. J. Cell Biol. 1988;106:629–639. doi: 10.1083/jcb.106.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen S.-Y., Compans R.W. Oligomerization, transport, and Golgi-retention of Punta Toro virus glycoproteins. J. Virol. 1991;65:5902–5909. doi: 10.1128/jvi.65.11.5902-5909.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen S.-Y., Matsuoka Y., Compans R.W. Golgi complex localization of the Punta Toro virus G2 protein requires its association with G1 protein. Virology. 1991;183:351–365. doi: 10.1016/0042-6822(91)90148-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elliott R.M., Schmaljohn C.S., Collet M.S. Bunyaviridae genome structure and gene expression. Curr. Topics Microbiol. Immunol. 1990;169:91–141. doi: 10.1007/978-3-642-76018-1_4. [DOI] [PubMed] [Google Scholar]
  6. Elliott R.W., Dunn E., Simons J.F., Pettersson R.F. Nucleotide sequence and coding strategy of the Uukuniemi virus L RNA segment. J. Gen. Virol. 1992;73:1745–1752. doi: 10.1099/0022-1317-73-7-1745. [DOI] [PubMed] [Google Scholar]
  7. Elroy-Stein O., Fuerst T., Moss B. Vol. 86. 1989. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5′ sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system; pp. 6126–6130. (Proc. Natl. Acad. Sci., U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F. Bunyaviridae. Archives of Virology. Springer-Verlag; Berlin: 1991. Classification and nomenclature of viruses; pp. 273–283. Suppl. 2. [Google Scholar]
  9. Fuerst T.R., Niles E.G., Studier F.W., Moss B. Vol. 83. 1986. Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase; pp. 8122–8126. (Proc. Natl. Acad. Sci., U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gahmberg N., Pettersson R.F., Kääriäinen L. Efficient transport of Semliki Forest virus glycoproteins through a Golgi complex morphologically altered by Uukuniemi virus glycoproteins. EMBO J. 1986;5:3111–3118. doi: 10.1002/j.1460-2075.1986.tb04617.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gahmberg N., Kuismanen E., Keränen S., Pettersson R.F. Uukuniemi virus glycoproteins accumulate in and cause morphological changes of the Golgi complex in the absence of virus maturation. J. Virol. 1986;57:899–906. doi: 10.1128/jvi.57.3.899-906.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Griffiths G., Rottier P. Cell biology of viruses that assemble along the biosynthetic pathway. Sem. Cell Biol. 1992;3:367–381. doi: 10.1016/1043-4682(92)90022-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hobman T.C. Transport of viral glycoproteins into the Golgi complex. Trends Microbiol. 1993;1:124–130. doi: 10.1016/0966-842X(93)90126-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hurtley S.M., Helenius Protein oligomerization in the endoplasmic reticulum. Annu. Rev. Cell. Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  15. Jasmin B.J., Cartaud J., Bornens M., Changeux J.P. Vol. 86. 1989. Golgi apparatus in chick skeletal muscle: changes in its distribution during end plate development and after conversion; pp. 7218–7222. (Proc. Natl. Acad. Sci., U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuismanen E. Posttranslational processing of Uukuniemi virus glycoproteins G1 and G2. J. Virol. 1984;51:806–812. doi: 10.1128/jvi.51.3.806-812.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuismanen E., Bång B., Hurme M., Pettersson R.F. Uukuniemi virus maturation: immunofluorescence microscopy with monoclonal glycoprotein-specific antibodies. J. Virol. 1984;51:137–146. doi: 10.1128/jvi.51.1.137-146.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lappin D.F., Nakitare G.W., Palfreyman J.W., Elliott R.M. Localization of Bunyamwera bunyavirus G1 glycoprotein to the Golgi requires association with G2 but not with NSm. J. Gen. Virol. 1994;75:1–11. doi: 10.1099/0022-1317-75-12-3441. [DOI] [PubMed] [Google Scholar]
  19. Mackett M., Smith G.L., Moss B. The construction and characterization of vaccinia virus recombinants expressing foreign genes. In: Glover D.M., editor. Vol. 2. Oxford IRL Press; Oxford: 1985. pp. 191–212. (Dna Cloning). [Google Scholar]
  20. Maizel J.V., Jr. Polyacrylamide gel electrophoresis of viral proteins. Methods Virol. 1971;5:179–246. [Google Scholar]
  21. Matsuoka Y., Ihara T., Bishop D.H.L., Compans R.W. Intracellular accumulation of the Punta Toro virus glycoproteins expressed from cloned cDNA. Virology. 1988;167:251–260. doi: 10.1016/0042-6822(88)90075-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsuoka Y., Chen S.Y., Compans R.W. Bunyavirus protein transport and assembly. Curr. Topics Microbiol. Immunol. 1991;169:161–179. doi: 10.1007/978-3-642-76018-1_6. [DOI] [PubMed] [Google Scholar]
  23. Matsuoka Y., Chen S.-Y., Compans R.W. A signal for Golgi retention in bunyavirus G1 glycoproteins. J. Biol. Chem. 1994;269:22565–22573. [PubMed] [Google Scholar]
  24. Moremen K.W., Touster O., Robbins P.W. Novel purification of the catalytic domain of Golgi α-mannosidase, II. Characterization and comparison with the intact enzyme. J. Biol. Chem. 1991;266:16876–16885. [PubMed] [Google Scholar]
  25. Munro S. Sequences within and adjacent to the transmembrane segment of α-2,6-sialytransferase specify Golgi retention. EMBO J. 1991;10:3577–3588. doi: 10.1002/j.1460-2075.1991.tb04924.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakitare G.W., Elliott R.M. Expression of the Bunyamwera virus M genome segment and intracellular localization of NSm. Virology. 1993;195:511–520. doi: 10.1006/viro.1993.1402. [DOI] [PubMed] [Google Scholar]
  27. Nilsson T., Lucocq J.M., Mackay D., Warren G. The membrane spanning domain of β-1,4 galactosyltransferase specifies trans Golgi localization. EMBO J. 1991;10:3567–3575. doi: 10.1002/j.1460-2075.1991.tb04923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pensiero M.N., Hay J. The Hantaan virus M-segment glycoproteins G1 and G2 can be expressed independently. J. Virol. 1992;66:1907–1914. doi: 10.1128/jvi.66.4.1907-1914.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Persson R., Pettersson R.F. Formation and intracellular transport of a heterodimeric viral spike protein complex. J. Cell Biol. 1991;112:257–266. doi: 10.1083/jcb.112.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pesonen M., Kuismanen E., Pettersson R.F. Monosaccharide sequence of protein-bound glycans of Uukuniemi virus. J. Virol. 1982;41:390–400. doi: 10.1128/jvi.41.2.390-400.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pettersson R.F. Protein localization and virus assembly at intracellular membranes. Curr. Topics Microbiol. Immunol. 1991;170:67–106. doi: 10.1007/978-3-642-76389-2_3. [DOI] [PubMed] [Google Scholar]
  32. Pettersson R.F., Gahmberg N., Kuismanen E., Kääriäinen L., Rönnholm R., Saraste J. Bunyavirus membrane proteins as models for Golgi-specific proteins. Mod. Cell Biol. 1988;6:65–96. [Google Scholar]
  33. Rönnholm R. Localization to the Golgi complex of Uukuniemi virus glycoproteins G1 and G2 expressed from cloned cDNAs. J. Virol. 1992;66:4525–4531. doi: 10.1128/jvi.66.7.4525-4531.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rönnholm R., Pettersson R.F. Complete nucleotide sequence of the M RNA segment of Uukuniemi virus encoding the membrane glycoproteins G1 and G2. Virology. 1987;160:191–202. doi: 10.1016/0042-6822(87)90060-2. [DOI] [PubMed] [Google Scholar]
  35. Rose J.K., Doms R.W. Regulation of protein export from the endoplasmic reticulum. Annu. Rev. Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  36. Ruusala A., Persson R., Schmaljohn C.S., Pettersson R.F. Coexpression of the membrane glycoproteins G1 and G2 of Hantaan virus is required for targeting to the Golgi complex. Virology. 1992;186:53–64. doi: 10.1016/0042-6822(92)90060-3. [DOI] [PubMed] [Google Scholar]
  37. Simons J., Hellman U., Pettersson R.F. Uukuniemi virus S RNA segment: ambisense coding strategy, packaging of complementary strands into virions, and homology to members of the genus Phlebovirus. J. Virol. 1992;64:247–255. doi: 10.1128/jvi.64.1.247-255.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Swift A., Machamer C.E. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J. Cell. Biol. 1991;115:19–30. doi: 10.1083/jcb.115.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Teasdale R.D., Dágostaro G., Gleeson P.A. The signal for Golgi retention of bovine β1,4-galactosyltransferase is in the transmembrane domain. J. Biol. Chem. 1992;267:4084–4096. [PubMed] [Google Scholar]
  40. Ulmanen I., Seppälä P., Pettersson R.F. In vitro translation of Uukuniemi virus-specific RNAs: identification of a nonstructural protein and a precursor to the membrane glycoproteins. J. Virol. 1981;37:72–79. doi: 10.1128/jvi.37.1.72-79.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wikström L., Persson R., Pettersson R.F. Intracellular transport of the G1 and G2 membrane glycoproteins of Uukuniemi virus. In: Kolakofsky D., Mahy B.W.J., editors. Genetics and Pathogenicity of Negative Strand Viruses. Elsevier; New York: 1989. pp. 33–41. [Google Scholar]
  42. Wong S.H., Low S.H., Hong W. The 17-residue transmembrane domain of β-galactoside α2,6-sialytransferase is sufficient for Golgi retention. J. Cell Biol. 1992;117:245–258. doi: 10.1083/jcb.117.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES