Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2000 Mar 7;39(2):277–288. doi: 10.1016/0168-1702(95)00098-4

Expression cloning and antigenic analysis of the nucleocapsid protein of equine arteritis virus

ED Chirnside 1,*, PM Francis 1, JA Mumford 1
PMCID: PMC7133929  PMID: 8837890

Abstract

A series of recombinant fusion proteins derived from equine arteritis virus (EAV) open reading frame (ORF) 7 have been used to define the immunoreactive region of the viral nucleocapsid (N) protein. Reactivities of recombinant N fusion proteins with post-infection equine sera in immunoblots and ELISAs indicate that the major nucleocapsid protein epitope is located within amino acid residues 1–69. In ELISAs two recombinant nucleocapsid fusion proteins containing residues 1–69 (rN1–69) and 1–28 (rN1–28) discriminated between pre- and post-infection, and pre- and post-vaccination serum samples. Additionally rN1–69 and rN1–28 detected seroconversions following vaccination with a killed virus preparation, even in the absence of a detectable virus neutralising response. Although a good correlation existed between virus neutralising antibody and rN1–69 ELISA positive values in post-infection sera, all the rN proteins failed to induce any virus neutralising response in immunised rabbits.

Keywords: Arterivirus, Equine arteritis virus (EAV), Nucleocapsid (N) protein, Antigenic analysis, Diagnostic antigen

Reference

  1. Balasuriya U.B.R., Rossitto P.V., DeMaula C.D., MacLachlan N.J. A 29K envelope glycoprotein of equine arteriyis virus expresses neutralisation determinants recognised by murine monoclonal antibodies. J. Gen. Virol. 1993;74:2525–2529. doi: 10.1099/0022-1317-74-11-2525. [DOI] [PubMed] [Google Scholar]
  2. Balasuriya U.B.R., MacLachlan N.J., de Vries A.A.F., Rossitto P.V., Rottier P.J.M. Identification of a neutralization site in the major envelope glycoprotein (GL) of equine arteritis virus. Virology. 1995;207:518–527. doi: 10.1006/viro.1995.1112. [DOI] [PubMed] [Google Scholar]
  3. Cavanagh D., Brien D.A., Brinton M., Enjuanes L., Holmes K.V., Horzinek M.C., Lai M.M.C., Laude H., Plagemann P.G.W., Siddell S. Revision of the taxonomy of the Coronavirus, Torovirus and Arterivirus genera. Arch. Virol. 1994;135:227–237. doi: 10.1007/BF01309782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chirnside E.D. Equine arteritis virus: an overview. Br. Vet. J. 1992;148:181–197. doi: 10.1016/0007-1935(92)90044-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chirnside E.D., Wearing C.M., Binns M.M., Mumford J.A. Comparison of M and N gene sequences distinguishes variation amongst equine arteritis virus isolates. J. Gen. Virol. 1994;74:1491–1497. doi: 10.1099/0022-1317-75-6-1491. [DOI] [PubMed] [Google Scholar]
  6. Chirnside E.D., de Vries A.A.F., Mumford J.A., Rottier P.J.M. Equine arteritis virus neutralising antibody in the horse is induced by a determinant on the large envelope glycoprotein (GL) J. Gen. Virol. 1995;76:1989–1998. doi: 10.1099/0022-1317-76-8-1989. [DOI] [PubMed] [Google Scholar]
  7. Chirnside E.D., Franvis P.M., de Vries A.A.F., Sinclair R., Mumford J.A. Development and evaluation of an ELISA using recombinant fusion protein to detect the presence of host antibody to equine arteritis virus (EAV) J. Virol. Methods. 1995;54:1–13. doi: 10.1016/0166-0934(95)00020-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conzelmann K.-K., Visser N., van Woensel P., Thiel H.-J. Molecular characterisation of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology. 1993;193:329–339. doi: 10.1006/viro.1993.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Vries A.A.F. The University of Utrecht; 1994. The molecular biology of equine arteritis virus. (PhD thesis). [Google Scholar]
  10. De Vries A.A.F., Chirnside E.D., Bredenbeek P., Gravestein L.A., Horzinek M.C., Spaan W.J.M. All subgenomic mRNAs of equine arteritis virus contain a common leader sequence. Nucl. Acids Res. 1990;18:3241–3247. doi: 10.1093/nar/18.11.3241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Vries A.A.F., Chirnside E.D., Horzinek M.C., Rottier P.J.M. The structural proteins of equine arteritis virus. J. Virol. 1992;66:6294–6303. doi: 10.1128/jvi.66.11.6294-6303.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Vries A.A.F., Raamsman M.J.B., van Dijk H.A., Horzinek M.C., Rottier P.J.M. The small envelope glycoprotein (Gs) of equine arteritis virus folds into three distinct monomers and a disulfide-linked dimer. J. Virol. 1995;69:3441–3448. doi: 10.1128/jvi.69.6.3441-3448.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Den Boon J.A., Snijder E.J., Chirnside E.D., de Vries A.A.F., Horzinek M.C., Spaan W.J.M. Equine arteritis virus is not a togavirus but belongs to the coronavirus-like superfamily. J. Virol. 1991;65:2910–2920. doi: 10.1128/jvi.65.6.2910-2920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Deregt D., de Vries A.A.F., Raamsman M.J.B., Elmgren L.D., Rottier P.J.M. Monoclonal antibodies to equine arteritis virus proteins identity the GL protein as a target for virus neutralisation. J. Gen. Virol. 1994;75:2439–2444. doi: 10.1099/0022-1317-75-9-2439. [DOI] [PubMed] [Google Scholar]
  15. Doll E.R., Knappenberger R.E., Bryans J.T. An outbreak of abortion caused by the equine arteritis virus. Cornell Vet. 1957;47:69–75. [PubMed] [Google Scholar]
  16. Gibson T.J. University of Cambridge; England: 1984. Studies on the Epstein-Barr virus genome. (PhD thesis). [Google Scholar]
  17. Godeny E.K., Chen L., Kumar N., Methven S.L., Koonin E.V., Brinton M.A. Complete genomic sequence and phylogenetic analysis of the lactate dehydrogenase-elevating virus (LDV) Virology. 1993;194:585–596. doi: 10.1006/viro.1993.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Golnik W., Michalska Z., Michalak T. Natural equine viral arteritis in foals. Schweiz. Arch. Tierheilkd. 1981;123:523–533. [PubMed] [Google Scholar]
  19. Hyllseth B. Structural proteins of equine arteritis virus. Arch. gesamte Virusforsch. 1973;40:177–188. doi: 10.1007/BF01242536. [DOI] [PubMed] [Google Scholar]
  20. Iwashita O., Harasawa R. Structural polypeptides of equine arteritis virus. Jpn. J. Vet. Sci. 1987;49:923–925. doi: 10.1292/jvms1939.49.923. [DOI] [PubMed] [Google Scholar]
  21. Kuo L., Chen Z., Rowland R.R.R., Faaberg K.S., Plagemann P.G.W. Lactate dehydrogenase-elevating virus (LDV): subgenomic mRNAs, mRNA leader and comparison of 3′-terminal sequences of two LDV isolates. Virus Res. 1992;23:55–72. doi: 10.1016/0168-1702(92)90067-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCollum W.H., Doll E.R., Wilson J.C. The recovery of virus from horses with experimental cases of equine arteritis using monolayer cell cultures of equine kidney. Am. J. Vet. Res. 1961;23:465–469. [Google Scholar]
  23. Meulenberg J.J.M., Hulst M.M., de Meijer E.J., Moonen P.L.J.M., van Besten A., de Kluyver E.P., Wensvoort G., Moorman R.J.M. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology. 1993;192:62–72. doi: 10.1006/viro.1993.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meulenberg J.J.M., de Meijer E.J., Moorman R.J.M. Subgenomic RNAs of Leystad virus contain a conserved leader-body junction sequence. J. Gen. Virol. 1993;74:1697–1701. doi: 10.1099/0022-1317-74-8-1697. [DOI] [PubMed] [Google Scholar]
  25. Murphy F.A. Togavirus morphology and morphogenesis. In: Schlesinger R.W., editor. The Togaviruses: Biology Structure and Replication. Academic Press; London: 1980. pp. 241–316. [Google Scholar]
  26. Plagemann P.G.W., Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv. Virus Res. 1992;41:99–192. doi: 10.1016/S0065-3527(08)60036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sambrook J., Fritsch E.F., Maniatis T. 2nd ed. Cold Spring Harbor Laboratory; New York: 1989. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  28. Senne D.A., Pearson J.E., Carbrey E.A. Equine viral arteritis: a standard procedure for the virus neutralisation test and comparison of results of a proficiency test performed at five laboratories. Proceedings of the 89th Annual Meeting of the United States Animal Health Association; Milwaukee, WI; 1985. pp. 29–34. [Google Scholar]
  29. Smith D.B., Johnson K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusion proteins with glutathione-S-transferase. Gene. 1988;67:31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  30. Timoney P.J., McCollum W.H., Roberts A.W., Murphy T.W. Demonstration of the carrier state in naturally acquired equine arteritis virus infection in the stallion. Res. Vet. Sci. 1986;41:279–280. [PubMed] [Google Scholar]
  31. Vaala W.E., Hamir A.N., Dubovi E.J., Timoney P.J., Ruiz B. Fatal, congenitally acquired infection with equine arteritis virus in a neonatal thoroughbred. Equine Vet. J. 1992;24:155–158. doi: 10.1111/j.2042-3306.1992.tb02803.x. [DOI] [PubMed] [Google Scholar]
  32. Van Berlo M.F., Rottier P.J.M., Spaan W.J.M., Horzinek M.C. Equine arteritis virus (EAV) induced polypeptide synthesis. J. Gen. Virol. 1986;67:1543–1549. doi: 10.1099/0022-1317-67-8-1543. [DOI] [PubMed] [Google Scholar]
  33. Zeegers J.J.W., van der Zeijst B.A.M., Horzinek M.C. The structural proteins of equine arteritis virus. Virology. 1976;73:200–205. doi: 10.1016/0042-6822(76)90074-x. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES