Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;27(2):147–160. doi: 10.1016/0168-1702(93)90078-2

A H1 hemagglutinin of a human influenza A virus with a carbohydrate-modulated receptor binding site and an unusual cleavage site

I Günther a, B Glatthaar b, G Döller b, W Garten a,
PMCID: PMC7133948  PMID: 8460527

Abstract

Two receptor binding variants of the influenza virus A/Tübingen/12/85 (H1N1) were separated by their different plaque formation in MDCK cells. Hemagglutination of variant I was restricted to red blood cells of guinea pigs, whereas variant II also hemagglutinated chicken cells. The variants differed also in their ability to bind to α2,6-linked sialic acid. Evidence is presented that this difference is determined by a complex carbohydrate side chain at asparagine131 near the receptor binding site which is absent in variant II. With both variants, the arginine found at the cleavage site of all other human isolates analyzed so far was replaced by lysine.

Keywords: Influenza A virus variant, H1 hemagglutinin, Receptor binding site, Cleavage site

References

  1. Aytay S., Schulze I.T. Single amino acid substitutions in the hemagglutinin can alter the host range and receptor binding properties of H1 strains of influenza A virus. J. Virol. 1991;65:3022–3028. doi: 10.1128/jvi.65.6.3022-3028.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Both G.W., Shi C.H., Kilbourne E.D. Vol. 80. 1983. Hemagglutinin of swine influenza virus: a single amino acid change pleiotropically affects viral antigenicity and replication; pp. 6996–7000. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burnet F.M., Bull D.R. Changes in influenza virus associated with adaptation to passage in chick embryos. Aust. J. Exp. Med. Sci. 1943;21:55–69. [Google Scholar]
  4. Cohen A., Biddle F. The effect of passage in different hosts on the inhibitor sensitivity of an asian influenza virus strain. Virology. 1960;11:458–473. doi: 10.1016/0042-6822(60)90087-8. [DOI] [PubMed] [Google Scholar]
  5. Concannon P., Cummings I.W., Salser W.A. Nucleotide sequence of the influenza virus A/USSR/90/77 hemagglutinin gene. J. Virol. 1984;49:276–278. doi: 10.1128/jvi.49.1.276-278.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crecelius D.M., Deom C.M., Schulze I.T. Biological properties of a hemagglutinin mutant of influenza virus selected by host cells. Virology. 1984;139:164–177. doi: 10.1016/0042-6822(84)90337-4. [DOI] [PubMed] [Google Scholar]
  7. Daniels R.S., Jeffries S., Yates P., Schild C.G., Rogers G.N., Paulson J.C., Wharton S.A., Douglas A.R., Skehel J.J., Wiley D.C. The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. EMBO J. 1987;6:1459–1465. doi: 10.1002/j.1460-2075.1987.tb02387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deom C.M., Caton A.J., Schulze I.T. Vol. 83. 1986. Host cell-mediated selection of a mutant influenza A virus that has lost a complex oligosaccharide from the tip of the hemagglutinin; pp. 3771–3775. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Döller P.C., Döller G., Gerth H.-J. Subtype-specific identification of influenza virus in cell cultures with FITC-labelled egg yolk antibodies. Med. Microbiol. Immunol. 1987;176:27–35. doi: 10.1007/BF00189406. [DOI] [PubMed] [Google Scholar]
  10. Feldmann H., Kretzschmar E., Klingeborn B., Rott R., Klenk H.-D., Garten W. The structure of serotype H10 hemagglutinin of influenza A virus: comparison of an apathogenic avian and a mammalian strain pathogenic for mink. Virology. 1988;165:428–437. doi: 10.1016/0042-6822(88)90586-7. [DOI] [PubMed] [Google Scholar]
  11. Gitelman A.K., Kaverin N.V., Kharitonenkov I.G., Rudneva I.A., Zhdanov V.M. Changes in the antigenic specificity of influenza virus haemagglutinin in the course of adaptation to mice. Virology. 1984;134:230–232. doi: 10.1016/0042-6822(84)90288-5. [DOI] [PubMed] [Google Scholar]
  12. Gotoh B., Ogasawara T., Toyoda T., Inocencio N.M., Hamaguchi M., Nagai Y. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 1990;9:4189–4195. doi: 10.1002/j.1460-2075.1990.tb07643.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katz J.M., Webster R.G. Antigenic and structural characterization of multiple subpopulations of H3N2 influenza virus from an individual. Virology. 1988;165:446–456. doi: 10.1016/0042-6822(88)90588-0. [DOI] [PubMed] [Google Scholar]
  14. Katz J.M., Wang M., Webster R.G. Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J. Virol. 1990;64:1808–1811. doi: 10.1128/jvi.64.4.1808-1811.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kawaoka Y., Yamnikova S., Chambers T.M., Lvov D.K., Webster R.G. Molecular characterization of a new hemagglutinin, subtype H 14, of influenza A virus. Virology. 1990;179:759–767. doi: 10.1016/0042-6822(90)90143-f. [DOI] [PubMed] [Google Scholar]
  16. Klenk H.-D., Rott R., Becht H. On the structure of the influenza virus envelope. Virology. 1972;47:579–591. doi: 10.1016/0042-6822(72)90547-8. [DOI] [PubMed] [Google Scholar]
  17. Klenk H.-D., Rott R., Orlich M., Blödorn J. Activation on influenza A viruses by trypsin treatment. Virology. 1975;68:426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
  18. Klenk H.-D., Rott R. The molecular biology of influenza virus pathogenicity. Adv. Virus Res. 1988;34:247–281. doi: 10.1016/S0065-3527(08)60520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kohama T., Garten W., Klenk H.-D. Changes in conformation and charge paralleling proteolytic activation of Newcastle disease virus glycoproteins. Virology. 1981;111:364–376. doi: 10.1016/0042-6822(81)90340-8. [DOI] [PubMed] [Google Scholar]
  20. Kuroda K., Hauser C, Rott R., Klenk H.-D., Doerfler W. Expression of the influenza virus hemagglutinin in insect cells by a baculovirus vector. EMBO J. 1986;5:1359–1365. doi: 10.1002/j.1460-2075.1986.tb04367.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Naeve C.W., Hinshaw V.S., Webster R.G. Mutations in the hemagglutinin receptor binding site can change the biological properties of an influenza virus. Virology. 1984;51:567–569. doi: 10.1128/jvi.51.2.567-569.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nobusawa E., Nakajima K. Amino acid substitution at position 226 of the hemagglutinin molecule of influenza (H1N1) virus affects receptor binding activity but not fusion activity. Virology. 1988;167:8–14. doi: 10.1016/0042-6822(88)90048-7. [DOI] [PubMed] [Google Scholar]
  23. Nobusawa E., Aoyama T., Kato H., Suzuki Y., Tateno Y., Nakajima K. Comparison of complete amino acid sequences and receptor binding properties among 13 serotypes of hemagglutinins of influenza viruses. Virology. 1991;182:475–485. doi: 10.1016/0042-6822(91)90588-3. [DOI] [PubMed] [Google Scholar]
  24. Ogasawara T., Gotoh B., Suzuki H., Asaka J., Shimokata K., Rott R., Nagai Y. Expression of factor X and its significance for the determination of paramyxovirus tropism in the chick embryo. EMBO J. 1992;11:467–472. doi: 10.1002/j.1460-2075.1992.tb05076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oxford J.S., Corcoran T., Knott R., Bates J., Bartolomei O., Major D., Newman R.W., Yates P., Robertson J., Webster R.G., Schild G.C. Serological studies with influenza A (H1N1) viruses cultivated in eggs or in a canine kidney cell line (MDCK) Bull. W.H.O. 1987;65:181–187. [PMC free article] [PubMed] [Google Scholar]
  26. Oxford J.S., Schild G.C., Corcoran T., Newman R., Major D., Robertson J., Bootman J., Higgins P., Al-Nakib W., Tyrrell D.A.J. A host-cell-selected variant of influenza B virus with a single nucleotide substitution in HA affecting a potential glycosylation site was attenuated in virulence for volunteers. Arch. Virol. 1990;110:37–46. doi: 10.1007/BF01310701. [DOI] [PubMed] [Google Scholar]
  27. Parvin J.D., Moscana A., Pan W.T., Leider J.M., Palese P. Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1. J. Virol. 1986;59:377–383. doi: 10.1128/jvi.59.2.377-383.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rajakumar A., Swierkocz E., Schulze I.T. Vol. 87. 1990. Sequence of an influenza virus hemagglutinin determined directly from a clinical sample; pp. 4154–4158. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Robertson J.S., Naeve C.W., Webster R.G., Bootman J.S., Newman R., Schild G.C. Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology. 1985;143:166–174. doi: 10.1016/0042-6822(85)90105-9. [DOI] [PubMed] [Google Scholar]
  30. Robertson J.S., Bootman R., Newman R., Oxford J.S., Daniels R.S., Webster R.G., Schild G.C. Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A (H1N1) virus. Virology. 1987;160:31–37. doi: 10.1016/0042-6822(87)90040-7. [DOI] [PubMed] [Google Scholar]
  31. Robertson J.S., Nicolson C, Bootman J.S., Major D., Robertson E.W., Wood J.M. Sequence analysis of the haemagglutinin (HA) of influenza A (H1N1) viruses present in clinical material and comparison with the HA of laboratory-derived virus. J. Gen. Virol. 1991;72:2671–2677. doi: 10.1099/0022-1317-72-11-2671. [DOI] [PubMed] [Google Scholar]
  32. Rogers G.N., Pritchett T.J., Lane J.L., Paulson J.C. Differential sensitivity of human, avian and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor-specific variants. Virology. 1983;131:394–408. doi: 10.1016/0042-6822(83)90507-x. [DOI] [PubMed] [Google Scholar]
  33. Rogers G.N., Paulson J.C., Daniels R.S., Skehel J.J., Wilson I.A., Wiley D.C. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983;304:76–78. doi: 10.1038/304076a0. [DOI] [PubMed] [Google Scholar]
  34. Rogers G.N., Daniels R.S., Skehel J.J., Wiley D.C., Wang X., Higa H.H., Paulson J.C. Host-mediated selection of influenza virus receptor variants. J. Biol. Chem. 1985;260:7362–7367. [PubMed] [Google Scholar]
  35. Rogers G.N., D'Souza B.L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology. 1989;173:317–322. doi: 10.1016/0042-6822(89)90249-3. [DOI] [PubMed] [Google Scholar]
  36. Schild G.C., Oxford J.S., de Jong J.C., Webster R.G. Evidence for host-cell selection of influenza virus antigenic variants. Nature. 1983;303:706–709. doi: 10.1038/303706a0. [DOI] [PubMed] [Google Scholar]
  37. Scholtissek C., Rott R., Klenk H.-D. Two different mechanisms of the inhibition of the multiplication of enveloped viruses by glucosamine. Virology. 1975;63:191–200. doi: 10.1016/0042-6822(75)90384-0. [DOI] [PubMed] [Google Scholar]
  38. Schultze B., Gross H.-J., Brossmer R., Klenk H.-D., Herrler G. Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-o-acetylneuraminic acid-containing receptors on erythrocytes: comparison with bovine coronavirus and influenza C virus. Virus Research. 1990;16:185–194. doi: 10.1016/0168-1702(90)90022-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Seidel W., Künkel F., Geisler B., Garten W., Herrmann B., Döhner L., Klenk H.-D. Intraepidemic variants of influenza virus H3 hemagglutinin differing in the number of carbohydrate side chains. Arch. Virol. 1991;120:289–296. doi: 10.1007/BF01310484. [DOI] [PubMed] [Google Scholar]
  40. Skehel J.J., Stevens D.J., Daniels R.S., Douglas A.R., Knossow M., Wilson J.A., Wiiey D.C. Vol. 81. 1984. A carbohydrate site chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody; pp. 1779–1783. (Proc. Natl. Acad. Sci.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Suzuki Y., Kato H., Naeve C.W., Webster R.G. Single amino acid substitution in an antigenic site of influenza virus hemagglutinin can alter the specificity of binding to cell membrane-associated gangliosides. J. Virol. 1989;63:4298–4302. doi: 10.1128/jvi.63.10.4298-4302.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang M., Katz J.M., Webster R. Extensive heterogenicity in the hemagglutinin of egg-grown influenza viruses from different patients. Virology. 1989;171:275–279. doi: 10.1016/0042-6822(89)90538-2. [DOI] [PubMed] [Google Scholar]
  43. Waterfield M.D., Gething M.J., Scrace G., Skehel J.J. The carbohydrate side chains and disulfide bonds of the hemagglutinin of influenza virus A/Japan/305/57 (H2N1) In: Laver G., Air G., editors. Structure and variation in influenza virus. Elsevier; Amsterdam: 1980. pp. 11–20. [Google Scholar]
  44. Weis W., Brown J.H., Cusack S., Paulson J.C., Skehel J.J., Wiley D.C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988;333:426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
  45. Wilson I.A., Skehel J.J., Wiley D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature. 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  46. Winter G., Fields S., Brownlee G.G. Nucleotide sequence of the haemagglutinin gene of a human influenza virus H1 subtype. Nature. 1981;292:72–75. doi: 10.1038/292072a0. [DOI] [PubMed] [Google Scholar]
  47. Yates P.J., Bootman J.S., Robertson J.S. The antigenic structure of a human influenza A (M1N1) virus isolate grown exclusively in MDCK cells. J. Gen. Virol. 1990;71:1683–1688. doi: 10.1099/0022-1317-71-8-1683. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES