Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1999 Mar 8;42(1):41–52. doi: 10.1016/0168-1702(96)01294-4

Genetic variation in open reading frame 2 of field isolates and laboratory strains of equine arteritis virus

Jodi F Hedges a, Udeni BR Balasuriya a, Peter J Timoney b, William H McCollum b, NJames MacLachlan a,
PMCID: PMC7133956  PMID: 8806173

Abstract

The open reading frame 2 (ORF2) of three laboratory strains, the live attenuated vaccine virus, and 18 field isolates of equine arteritis virus (EAV) from Europe and North America was sequenced. The ORF2 of EAV encodes the Gs protein that is abundantly expressed in infected cells but constitutes less than 2% of the virion protein mass. Variation of ORF2 among the isolates facilitated phylogenetic analysis that largely confirmed results of an earlier study based on sequence divergence of ORF5 of the same isolates of EAV, despite exposure of the proteins encoded by ORF2 (Gs) and ORF5 (GL) to potentially different selective pressures in vivo. The data indicate that the Gs protein is highly conserved between isolates, considerably more so than the GL protein, consistent with an important role of the Gs protein in virus replication.

Keywords: Equine arteritis virus, Phylogenetic analysis, Gs protein

References

  1. Balasuriya U.B.R., MacLachlan N.J., de Vries A.A.F., Rossitto P.V., Rottier P.J.M. Identification of a neutralization site in the major envelope glycoprotein (GL) of equine arteritis virus. Virology. 1995;207:518–527. doi: 10.1006/viro.1995.1112. [DOI] [PubMed] [Google Scholar]
  2. Balasuriya U.B.R., Rossitto P.V., Demaula C.D., MacLachlan N.J. A 29K envelope glycoprotein of equine arteritis virus expresses neutralization determinants recognized by murine monoclonal antibodies. J. Gen. Virol. 1993;74:2525–2529. doi: 10.1099/0022-1317-74-11-2525. [DOI] [PubMed] [Google Scholar]
  3. Balasuriya U.B.R., Timoney P.J., McCollum W.H., MacLachlan N.J. Phylogenetic analysis of open reading frame 5 of field isolates of equine arteritis virus and identification of conserved and nonconserved regions in the GL envelope glycoprotein. Virology. 1995;214:690–697. doi: 10.1006/viro.1995.0087. [DOI] [PubMed] [Google Scholar]
  4. Brinton M.A., Gavin E.I., Fernandez A.V. Genotypic variation among six isolates of lactate dehydrogenase-elevating virus. J. Gen. Virol. 1986;67:2673–2684. doi: 10.1099/0022-1317-67-12-2673. [DOI] [PubMed] [Google Scholar]
  5. Bryans J.T., Doll E.R., Crowe M.E.W., McCollum W.H. The blood picture and thermal reaction in experimental viral arteritis of horses. Cornell Vet. 1957;47:43–52. [PubMed] [Google Scholar]
  6. Chirnside E.D., de Vries A.A.F., Mumford J.A., Rottier J.A. Equine arteritis virus-neutralizing antibody in the horse is induced by a determinant on the large envelope glycoprotein GL. J. Gen. Virol. 1995;76:1989–1998. doi: 10.1099/0022-1317-76-8-1989. [DOI] [PubMed] [Google Scholar]
  7. Chirnside E.D., Wearing C.M., Binns M.M., Mumford J.A. Comparison of the M and N gene sequences distinguishes variation amongst equine arteritis virus isolates. J. Gen. Virol. 1994;75:1491–1497. doi: 10.1099/0022-1317-75-6-1491. [DOI] [PubMed] [Google Scholar]
  8. Chou P.Y., Fasman G.D., Rose G.D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  9. Conzelmann K.K., Visser N., Woensel P.V., Thiel H.J. Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology. 1993;193:329–339. doi: 10.1006/viro.1993.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. den Boon J.A., Snijder D.J., Chirnside E.D., de Vries A.A.F., Horzinek M.C., Spaan W.J.M. Equine arteritis virus is not a togavirus but belongs to the coronavirus like superfamily. J. Virol. 1991;65:2910–2920. doi: 10.1128/jvi.65.6.2910-2920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deregt D., de Vries A.A.F., Raamsman M.J.B., Elmgren L.D., Rottier P.J.M. Monoclonal antibodies to equine arteritis virus proteins identify GL protein as a target for virus neutralization. J. Gen. Virol. 1994;75:2439–2444. doi: 10.1099/0022-1317-75-9-2439. [DOI] [PubMed] [Google Scholar]
  12. de Vries A.A.F. Utrecht University; Utrecht, the Netherlands: 1994. The molecular biology of equine arteritis virus. (Ph.D. Thesis). Addix, Wijk bij Duurstede, The Netherlands. [Google Scholar]
  13. de Vries A.A.F., Chirnside E.D., Horzinek M.C., Rottier P.J.M. Structural proteins of equine arteritis virus. J. Virol. 1992;66:6294–6303. doi: 10.1128/jvi.66.11.6294-6303.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Doll E.R., Bryans J.T., McCollum W.H., Crowe M.E.W. Isolation of a filterable agent causing arteritis of horses and abortion by mares. Its differentiation from the equine abortion (influenza) virus. Cornell Vet. 1957;47:3–41. [PubMed] [Google Scholar]
  15. Doll E.R., Bryans J.T., Wilson J.C., McCollum W.H. Immunization against equine viral arteritis using modified live virus propagated in cell cultures of rabbit kidney. Cornell Vet. 1968;58:497–524. [PubMed] [Google Scholar]
  16. Domingo E., Holland J.J. High error rates, population equilibrium, and evolution of RNA replication systems. In: Domingo E., Holland J.J., Ahlquist P., editors. CRC Press; Boca Raton, FL: 1988. pp. 3–36. (RNA Genetics, Vol. III. Variability of RNA genomes). [Google Scholar]
  17. Domingo E., Martinez-Salas E., Sobrino F., de la Torre J.C., Portela A., Ortin J., Lopes-Glands C., Perrs-Bern P., Villanueva N., Najera R., Vandepol S., Steinhauer D., Depolo N., Holland J. The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance—a review. Gene. 1985;40:1–8. doi: 10.1016/0378-1119(85)90017-4. [DOI] [PubMed] [Google Scholar]
  18. Faragher S.G., Meek A.D.J., Rice C.M., Dalgarno L. Genome sequences of a mouse-avirulent and a mouse-virulent strain of Ross River virus. Virology. 1988;163:509–526. doi: 10.1016/0042-6822(88)90292-9. [DOI] [PubMed] [Google Scholar]
  19. Felstein J. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biol. J. Linn. Soc. 1981;16:183–196. [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 1981;17:368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  21. Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution. 1981;35:1229–1242. doi: 10.1111/j.1558-5646.1981.tb04991.x. [DOI] [PubMed] [Google Scholar]
  22. Felsenstein J. University of Washington, Department of Genetics SK-50; Seattle, WA 98195, USA: 1993. (PHYLIP (Phylogeny Inference Package) 3.5c manual). [Google Scholar]
  23. Fitch W.M., Margoliash E. Construction of phylogenetic trees. Science. 1967;155:279–384. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  24. Genetics Computer Group Program manual for the GCG package, Version 8. 1994 575 Science Drive, Madison, WI 53711. [Google Scholar]
  25. Glaser A.L., de Vries A.A.F., Dubovi E.J. Comparison of equine arteritis virus isolates using neutralizing monoclonal antibodies and identification of sequence changes in GL associated with neutralization resistance. J. Gen. Virol. 1995;76:2223–2233. doi: 10.1099/0022-1317-76-9-2223. [DOI] [PubMed] [Google Scholar]
  26. Harry T.O., McCollum W.H. Stability of viability and immunizing potency of lyophilized, modified equine arteritis live virus vaccine. Am. J. Vet. Res. 1981;42:1501–1505. [PubMed] [Google Scholar]
  27. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., Vandepol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  28. Jin L., Nei M. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol. Biol. Evol. 1990;7(1):82–102. doi: 10.1093/oxfordjournals.molbev.a040588. [DOI] [PubMed] [Google Scholar]
  29. Kimura M. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  30. Kyte J., Doolittle R.F. A simple method for displaying the hydrophatic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  31. McCollum W.H. Development of a modified virus strain and vaccine for equine viral arteritis. J. Am. Vet. Med. Assoc. 1969;155(2):318–322. [PubMed] [Google Scholar]
  32. Meulenberg J.J.M., Hulst M.M., de Meijer E.J., Moonen P.L.J.M., den Besten A., de Kluyver E.P., Wensvoort G., Moormann R.J.M. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS) is related to LDV and EAV. Virology. 1993;192:62–72. doi: 10.1006/viro.1993.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Meulenberg J.J.M., Hulst M.M., de Meijer E.J., Moonen P.L.J.M., den Besten A., de Kluyver E.P., Wensvoort G., Moormann R.J.M. Lelystad virus belongs to a new virus family, comprising lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus. Arch. Virol. 1994;9:441–448. doi: 10.1007/978-3-7091-9326-6_43. (Suppl.) [DOI] [PubMed] [Google Scholar]
  34. Morozov I., Meng X.J., Paul P.S. Sequence analysis of open reading frames (ORFs) 2 to 4 of a U.S. isolate of porcine reproductive and respiratory syndrome virus. Arch. Virol. 1995;140:1313–1319. doi: 10.1007/BF01322758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nichol S.T., Rowe J.E., Fitch W.M. Vol. 90. 1993. Punctuated equilibrium and positive Darwinian evolution in vesicular stomatitis virus; pp. 10424–10428. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Palmer G.A., Kuo L., Chen Z., Faaberg K.S., Plagemann P.G.W. Sequence of the genome of lactate dehydrogenase-elavating virus: heterogenicity between strains P and C. Virology. 1995;209:637–642. doi: 10.1006/viro.1995.1296. [DOI] [PubMed] [Google Scholar]
  37. Plagemann P.G.W. Lactate dehydrogenase-elevating virus and related viruses. In: Fields B.N., Knipe D.M., Howley P.M., editors. Fields Virology. 3rd edn. Lippincott-Raven; New York: 1996. pp. 1105–1120. [Google Scholar]
  38. Plagemann P.G.W., Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus and simian hemorrhagic fever virus: A new group of positive stranded RNA viruses. Adv. Virus Res. 1992;41:99–192. doi: 10.1016/S0065-3527(08)60036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  40. Snijder E.J., Horzinek M.C. Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. J. Gen. Virol. 1993;74:2305–2316. doi: 10.1099/0022-1317-74-11-2305. [DOI] [PubMed] [Google Scholar]
  41. Steinhauer D.A., de la Torre J.C., Meier E., Holland J.J. Extreme heterogeneity in populations of vesicular stomatitis virus. J. Virol. 1989;63(5):2072–2080. doi: 10.1128/jvi.63.5.2072-2080.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stroop W.G., Brinton M.A. Mouse strain-specific central nervous system lesions associated with lactate dehydrogenase-elevating virus infection. Lab. Invest. 1983;49:334–345. [PubMed] [Google Scholar]
  43. Sugita S., Kondo T., Sekiguchi K., Yamaguchi S., Kamada M., Nerome K., Fukunaga Y. Molecular evolution of the M gene of equine arteritis virus. Eq. Infect. Dis. 1994;7:39–43. [Google Scholar]
  44. Timoney P.J., McCollum W.H. Equine viral arteritis. Vet. Clin. North Am. 1993;9(2):295–308. doi: 10.1016/S0749-0739(17)30397-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Weaver S.C., Bellew L.A., Rico-Hesse R. Phylogenetic analysis of alphaviruses in the Venezuelan equine encephalitic complex and identification of the source of epizootic viruses. Virology. 1992;191:282–290. doi: 10.1016/0042-6822(92)90190-z. [DOI] [PubMed] [Google Scholar]
  46. Wege H., Stephenson J.R., Wege H., Meulen V. Genetic variation of neurotropic and non-neurotropic murine coronaviruses. J. Gen. Virol. 1981;54:67–74. doi: 10.1099/0022-1317-54-1-67. [DOI] [PubMed] [Google Scholar]
  47. Wensvoort G., Meulenberg J.J.M., Murtaugh M., Benfield D., Nelson E.A., Conzelmann K., Thiel H.J., Albina E., Drew T.W. The porcine reproductive and respiratory syndrome characteristics and diagnosis of the causative virus. Vet. Biotechnol. Newslett. 1993;3:113–120. [Google Scholar]
  48. Westaway E.G., Brinton M.A., Gaidamovich S.Y., Horzinek M.C., Igarashi A., Kaariainen L., Lvov D.K., Porterfield J.S., Russell P.K., Trent D.W. Togaviridae. Intervirology. 1985;24:125–139. doi: 10.1159/000149632. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES