Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;31(3):277–289. doi: 10.1016/0168-1702(94)90022-1

Expression of soluble forms of rubella virus glycoproteins in mammalian cells

Tom C Hobman 1,1, Nina OL Seto 1,2, Shirley Gillam 1,
PMCID: PMC7133988  PMID: 8191784

Abstract

Rubella virus (RV) virions contain two envelope glycoproteins, E1 and E2. Removal of hydrophobia regions in their carboxyl termini by genetic engineering caused them to be secreted rather than maintained in cell membranes of transfected COS cells. Truncated E2 was secreted in the absence of E1, whereas E1 lacking its transmembrane domain required coexpression of E2 for export from the cell. Secreted E2 was found to contain both O-linked and N-linked complex glycans, whereas secreted E1 retained virus neutralization and hemagglutination epitopes, suggesting the possibility of using soluble RV antigens as subunit vaccines and for serodiagnostic purposes. Stable Chinese hamster ovary cell lines secreting RV E1 were constructed for large scale preparation of recombinant E1.

Keywords: Rubella virus, Expression, Secretion, Soluble protein

References

  • 1.Andersson S., Davis D.L., Dahlback H., Jornvall H., Russell D.W. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 1988;264:8222–8229. [PubMed] [Google Scholar]
  • 2.Baron M., Forsell K. Oligomerisation of the structural proteins of rubella virus. Virology. 1991;185:811–819. doi: 10.1016/0042-6822(91)90552-m. [DOI] [PubMed] [Google Scholar]
  • 3.Bole D.G., Hendershott L.M., Kearney J.F. Post-translational association of immunoglobulin heavy chain-binding protein with nascent heavy chains in non-secreting and secreting hybridomas. J. Cell Biol. 1986;102:1558–1566. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Clarke D.M., Loo T.W., Hui I., Chong P., Gillam S. Nucleotide sequence and in vitro expression of rubella virus 24S subgenomic mRNA encoding the structural proteins E1, E2 and C. Nucl. Acids Res. 1987;15:3041–3057. doi: 10.1093/nar/15.7.3041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Colley K.J., Lee E.U., Adler B., Browne J.K., Paulson J.C. Conversion of a Golgi apparatus sialytransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J. Biol. Chem. 1989;264:17619–17622. [PubMed] [Google Scholar]
  • 6.Cooper L.Z., Buimovici-Klein E. In: Fields B.N., Knipe D.M., editors. Raven Press; New York: 1985. pp. 1005–1020. (Virology). [Google Scholar]
  • 7.Dorsett P.H., Miller D.C., Green K.Y., Byrd F.I. Structure and function of the rubella virus proteins. Rev. Infect Dis. 1985;7(Suppl. 1):S150–S156. doi: 10.1093/clinids/7.supplement_1.s150. [DOI] [PubMed] [Google Scholar]
  • 8.Gething M.J., Sambrook J. Construction of influenza hemagglutinin genes that code for intracellular and secreted forms of the protein. Nature. 1982;300:598–603. doi: 10.1038/300598a0. [DOI] [PubMed] [Google Scholar]
  • 9.Green K.Y., Dorsett P.H. Rubella virus antigen: Localization of epitopes involved in hemagglutination and neutralization by using monoclonal antibodies. J. Virol. 1986;57:893–898. doi: 10.1128/jvi.57.3.893-898.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Hobman T.C., Shukin R., Gillam S. Translocation of rubella virus glycoprotein E1 into the endosplasmic reticulum. J. Virol. 1988;62:4259–4264. doi: 10.1128/jvi.62.11.4259-4264.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Hobman T.C., Gillam S. In vitro and in vivo expression of rubella virus E2 glycoprotein: the signal peptide is located in the C-terminal region of capsid protein. Virology. 1989;173:241–250. doi: 10.1016/0042-6822(89)90240-7. [DOI] [PubMed] [Google Scholar]
  • 12.Hobman T.C., Lundström M.L., Gillam S. Processing and transport of rubella virus structural proteins in COS cells. Virology. 1990;178:122–133. doi: 10.1016/0042-6822(90)90385-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hobman T.C., Woodward L., Farquhar M.G. The rubella virus E1 glycoprotein is arrested in a novel post-ER, pre-Golgi compartment. J. Cell Biol. 1992;118:795–811. doi: 10.1083/jcb.118.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hobman T.C., Woodward L., Farquhar M.G. The rubella virus E2 and E1 spike glycoproteins are targeted to the Golgi complex. J. Cell Biol. 1993;121:269–281. doi: 10.1083/jcb.121.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Jackson M.R., Nilsson T., Peterson P.A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO. 1990;9:3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Katow S., Sugiura A. Antibody response to individual rubella virus proteins in congenital and other rubella virus infection. J. Clin. Microbiol. 1985;21:449–451. doi: 10.1128/jcm.21.3.449-451.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kunkel T.A. Vol. 82. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection; pp. 4753–4757. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Loo T.W., MacDonald I., Clarke D.M., Trudel M., Tingle A., Gillam S. Detection of antibodies to individual proteins of rubella virus. J. Virol. Methods. 1986;13:149–159. doi: 10.1016/0166-0934(86)90083-2. [DOI] [PubMed] [Google Scholar]
  • 19.Lundstrom M., Mauracher C.A., Tingle A.J. Characterization of carbohydrates linked to rubella virus glycoprotein E2. J. Gen. Virol. 1991;72:843–850. doi: 10.1099/0022-1317-72-4-843. [DOI] [PubMed] [Google Scholar]
  • 20.Machamer C.E., Rose J.K. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi apparatus. J. Cell Biol. 1987;195:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Nilsson T., Jackson M., Peterson P.A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell. 1989;58:707–718. doi: 10.1016/0092-8674(89)90105-0. [DOI] [PubMed] [Google Scholar]
  • 22.Oker-Blom C., Kalkkinen N., Kaarianen L., Pettersson R.F. Rubella virus contains one capsid protein and three envelope glycoproteins E1, E2a and E2b. J. Virol. 1983;46:964–973. doi: 10.1128/jvi.46.3.964-973.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Oker-Blom C. The gene order for rubella virus structural proteins is NH2-C-E2-E1-COOH. J. Virol. 1984;51:354–358. doi: 10.1128/jvi.51.2.354-358.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Rose J.K., Bergmann J.E. Expression from cloned cDNA of cell-surface secreted forms of the glycoprotein of vesicular stomatitis virus in eukaryotic cells. Cell. 1982;30:753–762. doi: 10.1016/0092-8674(82)90280-x. [DOI] [PubMed] [Google Scholar]
  • 25.Simonsen C.C., Levinson A.D. Vol. 80. 1983. Isolation and expression of an altered mouse dihydrofolate reductase cDNA; pp. 2495–2499. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Terry G.M., Ho-Terry L., Londesborough P., Rees K.R. Localization of the rubella E1 epitopes. Arch. Virol. 1988;98:189–197. doi: 10.1007/BF01322168. [DOI] [PubMed] [Google Scholar]
  • 27.Terry G.M., Ho-Terry L., Londesborough P., Rees K.R. A bio-engineered rubella E1 antigen. Arch. Virol. 1989;104:63–75. doi: 10.1007/BF01313808. [DOI] [PubMed] [Google Scholar]
  • 28.Qiu Z., Tufaro F., Gillam S. The influence of N-linked glycosylation on the antigenicity and immunogenicity of rubella virus E1 glycoprotein. Virology. 1992;190:876–881. doi: 10.1016/0042-6822(92)90929-j. [DOI] [PubMed] [Google Scholar]
  • 29.Qiu Z., Hobman T., McDonald H., Seto N., Gillam S. Role of N-linked oligosaccharides in processing and intracellular transport of E2 glycoprotein of rubella virus. J. Virol. 1992;66:3514–3521. doi: 10.1128/jvi.66.6.3514-3521.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Urlaub G., Chasin L.A. Vol. 77. 1980. Isolation of Chinese hamster ovary cell mutants deficient in dihydrofolate reductase activity; pp. 4216–4220. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Vidgren G., Takkinen K., Kalkkinen N., Kaarianen L., Pettersson R.F. Nucleotide sequence of the genes coding for the membrane glycoproteins E1 and E2 of rubella virus. J. Gen. Virol. 1987;68:2347–2357. doi: 10.1099/0022-1317-68-9-2347. [DOI] [PubMed] [Google Scholar]
  • 32.Waxham M.N., Wolinsky J.S. Immunochemical identification of rubella virus hemagglutinin. Virology. 1983;126:194–203. doi: 10.1016/0042-6822(83)90471-3. [DOI] [PubMed] [Google Scholar]
  • 33.Waxham M.N., Wolinsky J.S. Detailed immunologic analysis of the structural polypeptides of rubella virus using monoclonal antibodies. Virology. 1985;143:153–165. doi: 10.1016/0042-6822(85)90104-7. [DOI] [PubMed] [Google Scholar]
  • 34.Wolinsky J.S., McCarthy M., Allen-Cannaday O., Moore W.T., Jin R., Cao S., Lovett A., Simmons D. Monoclonal antibody-defined epitope map of expressed rubella virus protein domains. J. Virol. 1991;65:3986–3994. doi: 10.1128/jvi.65.8.3986-3994.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES