Abstract
The gene encoding the spike (S) protein from two geographically distinct strains (American and British) of canine coronavirus (CCV) was cloned and sequenced. The nucleotide sequence revealed open reading frames of 1443 or 1453 amino acids, respectively. Structural features include an N-terminal hydrophobic signal sequence, a hydrophilic cysteine-rich cluster near the C-terminus, two heptad repeats and 29 or 33 potential N-glycosylation sites. Pairwise comparisons of S amino acid sequences from these isolates with other CCV strains (Insavc1 and K378) revealed that heterogeneity, found mostly in the form of conservative substitutions, is distributed throughout the canine sequences. However, 5 variable regions could be identified. Similar analysis with feline, porcine, murine, chicken and human coronavirus sequences revealed that the canine sequences are much more closely related to the feline S protein sequence than to the porcine S protein sequences even though they are all from the same antigenic group. Moreover, the sequence similarity between CCV isolates and the feline coronavirus, feline infectious peritonitis virus (FIPV) was comparable. Expression of the CCV or the transmissible gastroenteritis virus (TGEV) S gene using the vaccinia virus system produced a protein of the expected size which could induce extensive syncytia formation in infected canine A72 cells.
Keywords: Coronavirus, S protein, Syncytium
Footnotes
The nucleotide sequence data reported in this paper have been submitted to GenBank and EMBL.
References
- Binns M.M., Boursnell M.E.G., Cavanagh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
- Brierley I., Boursnell M.E., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. An efficient ribosomal frameshifting signal in the polymerase encoding region of the coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britton P., Page K.W. Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus. Virus Res. 1990;18:71–80. doi: 10.1016/0168-1702(90)90090-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britton P., Mawditt K.L., Page K.W. The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronavirus: comparison with transmissible gastroenteritis virus genes. Virus Res. 1991;21:181–198. doi: 10.1016/0168-1702(91)90032-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavanagh D. Coronavirus IBV glycopeptides: size of their polypeptide moieties and nature of their oligosaccharides. J. Gen. Virol. 1983;64:1187–1191. doi: 10.1099/0022-1317-64-5-1187. [DOI] [PubMed] [Google Scholar]
- Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daya M., Wong F., Cervin M., Evans G., Vennema H., Spaan W., Anderson R. Mutation of host cell determinants which discriminate between lytic and persistent mouse hepatitis virus infection results in a fusion-resistant phenotype. J. Virol. 1989;70:3335–3346. doi: 10.1099/0022-1317-70-12-3335. [DOI] [PubMed] [Google Scholar]
- Delmas B., Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol. 1990;64:5367–5375. doi: 10.1128/jvi.64.11.5367-5375.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Degroot R.J., Maduro J., Lenstra J.A., Horzinek M.C., Ziejst B.A.M., van der Spaan W.J.M., Spaan W.J.M. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 1987;68:2639–2646. doi: 10.1099/0022-1317-68-10-2639. [DOI] [PubMed] [Google Scholar]
- DeGroot R.J., Andeweg A.C., Horzinek M.C., Spaan W.J.M. Sequence analysis of the 3′ end of the feline coronavirus FIPV 79-1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology. 1988;167:370–376. doi: 10.1016/0042-6822(88)90097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duatre M., Laude H. Sequence of the spike protein of the porcine epidemic diarrhoea virus. J. Gen. Virol. 1994;75:1195–1200. doi: 10.1099/0022-1317-75-5-1195. [DOI] [PubMed] [Google Scholar]
- Enjuanes L., Gebauer F., Correa I., Bullido M.J., Sune C., Smerdou C., Sanchez C., Lenstra J.A., Posthumus W.P.A., Meloen R.H. Localization of antigenic sites of the S-glycoprotein of transmissible gastroenteritis virus and their conservation in coronaviruses. Adv. Exp. Med. Biol. 1990;276:159–172. doi: 10.1007/978-1-4684-5823-7_23. [DOI] [PubMed] [Google Scholar]
- Gallagher T.M., Parker S.E., Buchmeier M.J. Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein. J. Virol. 1990;64:731–741. doi: 10.1128/jvi.64.2.731-741.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garwes D.J., Reynolds D.J. The polypeptide structures of canine coronavirus and its relationship to porcine transmissible gastroenteritis virus. J. Gen. Virol. 1981;52:153–157. doi: 10.1099/0022-1317-52-1-153. [DOI] [PubMed] [Google Scholar]
- Godet M., l'Haridon R., Vautherot J.-F., Laude H. TGEV coronavirus ORF4 encodes a membrane protein that is incorporated into virions. Virology. 1992;188:666–675. doi: 10.1016/0042-6822(92)90521-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heijne G.von. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986;14:4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins D.G., Sharp P.M. Fast and sensitive multiple sequence alignments on a microcomputer. Cabios. 1989;5:151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
- Holmes K.V., Dolfer E.W., Behnke J.N. Analysis of the functions of coronavirus glycoproteins by differential inhibition of synthesis with tunicamycin. Adv. Exp. Med. Biol. 1981;142:133–142. doi: 10.1007/978-1-4757-0456-3_11. [DOI] [PubMed] [Google Scholar]
- Horsburgh B.C., Brierley I., Brown T.D.K. Analysis of a 9.6kb sequence from the 3′-end of canine coronavirus. J. Gen. Virol. 1992;73:2849–2862. doi: 10.1099/0022-1317-73-11-2849. [DOI] [PubMed] [Google Scholar]
- Horzinek M.C., Lutz H., Pedersen N. Antigenic relationships among coronavirus homologous structural polypeptides of porcine, feline and canine coronaviruses. Infect. Immun. 1982;37:1148–1155. doi: 10.1128/iai.37.3.1148-1155.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keck J.G., Matsushima G.K., Makino S., Fleming J.O., Vannier D.M., Stohlman S.A., Lai M.M.C. In vivo RNA-RNA recombination of coronavirus in mouse brain. J. Virol. 1988;62:1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korner H., Schliephake A., Winter J., Zimprich F., Lassmann H., Sedgwick J., Siddell S., Wege H. Nucleocapsid or spike protein-specific CD4 + T lymphocytes protect against coronavirus-induced encephalomyelitis in the absence of CD8 + T cells. J. Immunol. 1991;147:2317–2323. [PubMed] [Google Scholar]
- Kusters J.G., Jager E.J., van der Zeijst B.A.M. Sequence evidence for in vivo RNA recombination in avian coronavirus IBV. Nucleic Acids Res. 1989;17:6726–6729. [Google Scholar]
- Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., van der Zeijst B.A.M., Horzinek M.C., Spaan W.J.M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackett M., Smith G.L. Vaccinia virus expression vectors. J. Gen. Virol. 1986;67:2067–2082. doi: 10.1099/0022-1317-67-10-2067. [DOI] [PubMed] [Google Scholar]
- Mounir S., Talbot P.J. Molecular characterization of the S protein gene of human coronavirux OC43. J. Gen. Virol. 1993;74:1981–1987. doi: 10.1099/0022-1317-74-9-1981. [DOI] [PubMed] [Google Scholar]
- Neimann H., Boschek B., Evans D., Rosing M., Tamura T., Klenk H.D. Post-translational glycosylation of coronavirus glycoprotein E1: inhibition by monensin. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker S.E., Gallagher T.M., Buchmeier M.J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989;173:664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker M.D., Yoo D., Cox G.J., Babiuk L.A. Primary structure of the S peplomer gene of bovine coronavirus and surface expression in insect cells. J. Gen. Virol. 1990;71:263–270. doi: 10.1099/0022-1317-71-2-263. [DOI] [PubMed] [Google Scholar]
- Pulford D.J., Britton P., Page K.W., Garwes D.J. Expression of TGEV structural genes in virus vectors. Adv. Exp. Med. Biol. 1990;276:223–231. doi: 10.1007/978-1-4684-5823-7_31. [DOI] [PubMed] [Google Scholar]
- Raabe T., Schelle-Prinz B., Siddell S.G. Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E. J. Gen. Virol. 1990;71:1065–1073. doi: 10.1099/0022-1317-71-5-1065. [DOI] [PubMed] [Google Scholar]
- Rasschaert D., Laude H. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
- Rasschaert D., Duarte M., Laude H. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J. Gen. Virol. 1990;71:2599–2607. doi: 10.1099/0022-1317-71-11-2599. [DOI] [PubMed] [Google Scholar]
- Sanchez C.M., Jimenez G., Laviada M.D., Correa I., Sune C., Bullido M.J., Gebaues F., Smerdou C., Callebaut P., Escribano J.M., Enjuanes L. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990;174:410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt I., Skinner M., Siddell S.G. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
- Siddell S., Wege H., ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
- Sodroski J., Goh W.C., Rosen C., Dayton A., Terwilligier E., Haseltine W.A. A second post-transcriptional trans activator gene required for HTLV-III replication. Nature. 1986;321:412–417. doi: 10.1038/321412a0. [DOI] [PubMed] [Google Scholar]
- Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- Staden R. The current status and portability of our sequence handling software. Nucleic Acids Res. 1986;14:217–231. doi: 10.1093/nar/14.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stauber R., Pfleiderer M., Siddell S. Proteolytic cleavage of the murine coronavirus surface glycoprotein is not required for fusion activity. J. Gen. Virol. 1993;74:183–191. doi: 10.1099/0022-1317-74-2-183. [DOI] [PubMed] [Google Scholar]
- Sturman L., Holmes K. The novel glycoproteins of coronaviruses. Trends Biochem. Sci. 1985;10:17–20. [Google Scholar]
- Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomley F.M., Binns M.M., Boursnell M.E.G., Mockett A.P.A., Brown T.D.K., Smith G.L. Expression of IBV spike protein by a vaccinia virus recombinant. J. Gen. Virol. 1987;68:2291–2298. [Google Scholar]
- Tyrrell D.A., Almeida J.D., Berry D.M. Coronaviruses. Nature. 1968;220:650. [Google Scholar]
- Vennema H., Heijnen A., Zijderveld A., Horzinek M.C., Spaan W.J.M. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. J. Virol. 1990;64:339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wesseling J.G., Vennema H., Godeke G.-J., Horzinek M.C., Rottier P.J.M. Nucleotide sequence and expression of the spike (S) gene of canine coronavirus and comparison with the S proteins of feline and porcine coronaviruses. J. Gen. Virol. 1994;75:1789–1794. doi: 10.1099/0022-1317-75-7-1789. [DOI] [PubMed] [Google Scholar]
- Williams R.K., Jiang G.-S., Holmes K.V. Vol. 88. 1991. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins; pp. 5533–5536. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]