Abstract
We have found that genomic RNA synthesis is inhibited by cycloheximide in cells infected with mouse hepatitis virus, strain A59 (MHV-A59), in agreement with previously published results (Sawicki S.G. and Sawicki D.L. (1986) J. Virol. 57, 328–334). In the present study, the fate of the residual genomic RNA synthesized in the presence of cycloheximide was determined. Nearly all of the genomic RNA synthesized in the presence of drug was incorporated into nucleocapsid structures, suggesting that even in the absence of protein synthesis, genomic RNA synthesis and encapsidation are coupled in MHV-infected cells. Sufficient free nucleocapsid N protein was available for this purpose, since the pool of soluble N protein was determined to decay with a half-life of approximately one hour. Negative strand RNA is the template for the synthesis of both genomic and subgenomic positive strand RNA, and would be predicted to accumulate primarily during the early phases of the lytic cycle. In agreement with this prediction, negative strand RNA accumulated during the first 5–6 h of infection, with little additional accumulation occurring over the next 2.5 h. In marked contrast, positive strand RNA increased 5–6-fold over the same 2.5 h period. These results, taken in conjunction with published data, suggest that negative strand RNA is synthesized during the early period of the infectious cycle and is stable in infected cells and also suggest that treatment with cycloheximide at late times does not inhibit positive strand RNA synthesis indirectly by blocking the formation of negative strand templates.
Keywords: mouse hepatitis virus, coronavirus, viral replication
References
- Anderson R., Cheley S., Haworth-Hatherell E. Comparison of polypeptides of two strains of murine hepatitis virus. Virology. 1979;97:492–494. doi: 10.1016/0042-6822(79)90363-5. [DOI] [PubMed] [Google Scholar]
- Berger S.L., Birkemeier C.S. Inhibition of intractable nucleases with ribonucleoside-vanadyl complexes. Isolation of messenger ribonucleic acid from resting lymphocytes. Biochemistry. 1979;18:5143–5149. doi: 10.1021/bi00590a018. [DOI] [PubMed] [Google Scholar]
- Brayton P.R., Lai M.M.C., Patton C.D., Stohlman S.A. Characterization of two RNA polymerase activities induced by mouse hepatitis virus. J. Virol. 1982;42:847–853. doi: 10.1128/jvi.42.3.847-853.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brayton P.R., Stohlman S.A., Lai M.M.C. Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases. Virology. 1984;133:197–201. doi: 10.1016/0042-6822(84)90439-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheley S., Anderson R., Cupples M.J., Lee Chan E.C.M., Morris V.L. Intracellular murine hepatitis virus-specific RNAs contain common sequences. Virology. 1981;112:596–604. doi: 10.1016/0042-6822(81)90305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denison M., Perlman S. Translation and processing of mouse hepatitis virus virion RNA in a cell-free system. J. Virol. 1986;60:12–18. doi: 10.1128/jvi.60.1.12-18.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu C.H., Kingsbury D.W., Murti K.G. Assembly of vesicular stomatitis virus nucleocapsids in vivo: a kinetic analysis. J. Virol. 1979;32:304–313. doi: 10.1128/jvi.32.1.304-313.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knipe D.M., Baltimore D., Lodish H.F. Separate pathways of maturation of the major structural proteins of vesicular stomatitis virus. J. Virol. 1977;21:1128–1139. doi: 10.1128/jvi.21.3.1128-1139.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lai M.M.C., Brayton P.R., Armen R.C., Patton C.D., Pugh C., Stohlman S.A. Mouse hepatitis virus A59: mRNA structure and genetic localization of the sequence divergence from hepatotropic strain MHV-3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai M.C.C., Patton C.D., Stohlman S.A. Replication of mouse hepatitis virus: negativestranded RNA and replicative form RNA are of genome length. J. Virol. 1982;44:487–492. doi: 10.1128/jvi.44.2.487-492.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai M.M.C., Patton C.D., Baric R.S., Stohlman S.A. Presence of leader sequences in the mRNA of mouse hepatitis virus. J. Virol. 1983;46:1027–1033. doi: 10.1128/jvi.46.3.1027-1033.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Vol. 81. 1984. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus; pp. 3626–3630. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrach H., Diamond D., Wozney J.M., Boedtker H. RNA molecular weight determinations of gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977;96:4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
- Leibowitz J.L., Wilhelmson K.C., Bond C.W. The virus-specific intracellular RNA species of two murine corona viruses: MHV-A59 and MHV-JHM. Virology. 1981;114:39–51. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahy B.W.J., Siddell S., Wege H., ter Meulen V. RNA-dependent RNA polymerase activity in murine coronavirus-infected cells. J. Gen. Virol. 1983;64:103–111. doi: 10.1099/0022-1317-64-1-103. [DOI] [PubMed] [Google Scholar]
- Maizel J. Polyacrylamide gel electrophoresis of viral proteins. In: Maramorosch K., Koproski H., editors. vol. 5. Academic Press; New York: 1971. pp. 176–246. (Methods in Virology). [Google Scholar]
- Maniatis T., Fritsch E., Sambrook J. Cold Spring Harbor Laboratory; 1982. pp. 230–242. (Molecular cloning: A laboratory manual). [Google Scholar]
- Messing J. New M13 vectors for cloning. In: Lowenstein J.M., editor. vol. 101. Academic Press; New York: 1983. pp. 20–78. (Methods in Enzymology). [Google Scholar]
- Patton J.J., Davis N.L., Wertz G.W. N protein alone satisfies the requirement for protein synthesis during RNA replication of vesticular stomatitis virus. J. Virol. 1984;49:303–309. doi: 10.1128/jvi.49.2.303-309.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlman S., Huang A. RNA synthesis of vesicular stomatitis virus. V. Interactions between transcription and replication. J. Virol. 1973;12:1395–1400. doi: 10.1128/jvi.12.6.1395-1400.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robb J., Bond C.W. Pathogenic murine coronaviruses I. Characterization of biological behavior in vitro and virus-specific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59 viruses. Virology. 1979;94:352–370. doi: 10.1016/0042-6822(79)90467-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawicki D.L., Sawicki S.G. Short-lived minus-strand polymerase of Semliki Forest virus. J. Virol. 1980;34:108–118. doi: 10.1128/jvi.34.1.108-118.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawicki S.G., Sawicki D.L. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis. J. Virol. 1986;57:328–334. doi: 10.1128/jvi.57.1.328-334.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddell S., Wege H., Barthel A. Coronavirus JHM: Intracellular protein synthesis. J. Gen. Virol. 1981;53:145–155. doi: 10.1099/0022-1317-53-1-145. [DOI] [PubMed] [Google Scholar]
- Siddell S., Wege H., ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
- Skinner M., Siddell S. Nucleotide sequencing of mouse hepatitis virus strain JHM messenger RNA. In: Rottier P.J.M., van der Zeijst B.A.M., Spaan W.J.M., Horzinek M.C., editors. Molecular Biology and Pathogenesis of Coronaviruses. Plenum Publishing Corp; New York: 1984. pp. 163–171. [DOI] [PubMed] [Google Scholar]
- Spaan W., Rottier P., Horzinek M., van der Zeijst B.A.M. Isolation and characterization of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spaan W.J.M., Rottier P.J., Horzinek M.C., van der Zeijst B.A.M. Sequence relationships between the genome and the intracellular RNA species 1, 3, 6, and 7 of mouse hepatitis virus strain A59. J. Virol. 1982;42:432–439. doi: 10.1128/jvi.42.2.432-439.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spaan W., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B.A.M., Siddell S. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J. 1983;2:1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. In: Lauffer M., Maramorosch K., editors. Vol. 28. Academic Press; New York: 1983. pp. 35–112. (Advances in Virus Research). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. Vol. 77. 1980. Hybridization of RNA and small DNA fragments transferred to nitrocellulose; pp. 5201–5205. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wertz G., Levine M. RNA synthesis by vesicular stomatitis virus and a small-plaque mutant: effects of cycloheximide. J. Virol. 1973;12:253–264. doi: 10.1128/jvi.12.2.253-264.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]