Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;20(2):107–120. doi: 10.1016/0168-1702(91)90103-3

Carbohydrate-induced conformational changes strongly modulate the antigenicity of coronavirus TGEV glycoproteins S and M

Bernard Delmas 1, Hubert Laude 1,
PMCID: PMC7134005  PMID: 1950169

Abstract

The carbohydrate composition and the immunoreactivity of the S and M glycoproteins of the coronavirus TGEV were studied at different stages of their maturation. The biosynthesis of S and M was analyzed in the presence of tunicamycin and monensin. The effect of treatment with endoglycosidases H and F and glycopeptidase F on the precursors and mature forms of S and M were also examined. Species 175K and 29K were characterized as high mannose forms of S and M, respectively, and species 220K and 30–36K as complex type glycosylated forms of these two proteins. M was present mainly as a 29K species in mature virions whereas the 175K form of S was not detected, thus implying that the two proteins undergo Golgi modifications at a far different efficiency. Anti-S and -M monoclonal antibodies were examined for their reactivity towards polypeptide species either treated with endo H or produced in the presence of tunicamycin. It was found that (i) among the four major antigenic sites previously defined (Delmas et al., 1986), only site C (amino acids 363 to 371) was notably expressed by the unglycosylated S polypeptide 155K, whereas the three other sites were dependent upon core-glycosylation, (ii) three of the four anti-M mAbs tested did not recognize the unglycosylated M polypeptide 26K. These data led us to conclude that co-translational, but not terminal glycosylation is an essential requirement for both acquisition and maintenance of the antigenicity of TGEV glycoproteins.

Keywords: Coronavirus, Glycoprotein, Glycosylation, Transmissible gastroenteritis virus, TGEV, Antigenicity, Epitope

References

  1. Alexander S., Elder J.H. Carbohydrate dramatically influences immune reactivity of antisera to viral glycoprotein antigens. Science. 1984;226:1328–1330. doi: 10.1126/science.6505693. [DOI] [PubMed] [Google Scholar]
  2. Cavanagh D., Davis P.J., Mockett A.P.A. Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res. 1988;11:141–150. doi: 10.1016/0168-1702(88)90039-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charley B., Laude H. Induction of alpha Interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1. J. Virol. 1988;62:8–11. doi: 10.1128/jvi.62.1.8-11.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Corréa I., Gebauer F., Bullido M.J., Sune C., Baay M.F.D., Zwaagstra K.A., Posthumus W.P.A., Lenstra J.A., Enjuanes L. Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J. Gen. Virol. 1990;71:271–279. doi: 10.1099/0022-1317-71-2-271. [DOI] [PubMed] [Google Scholar]
  5. Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986;67:1405–1418. doi: 10.1099/0022-1317-67-7-1405. [DOI] [PubMed] [Google Scholar]
  6. Delmas B., Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol. 1990;64:5367–5375. doi: 10.1128/jvi.64.11.5367-5375.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. J. Gen. Virol. 1990;71:1313–1323. doi: 10.1099/0022-1317-71-6-1313. [DOI] [PubMed] [Google Scholar]
  8. Elbein A.D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Ann. Rev. Biochem. 1987;56:497–534. doi: 10.1146/annurev.bi.56.070187.002433. [DOI] [PubMed] [Google Scholar]
  9. Garwes D.J., Bountiff L., Millson G.C., Elleman C.J. Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line. Adv. Exp. Med. Biol. 1984;173:79–93. doi: 10.1007/978-1-4615-9373-7_7. [DOI] [PubMed] [Google Scholar]
  10. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin-resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobs L., van der Zeijst B.A.M., Horzinek M.C. Characterization and translation of transmissible gastroenteritis virus mRNAs. J. Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klenk H.-D. Influence of glycosylation on antigenicity of viral proteins. In: van Regenmortel M.H.V., Neurath A.R., editors. Immunochemistry of viruses, II. The basis for serodiagnosis and vaccines. Elsevier; Amsterdam: 1990. pp. 25–37. [Google Scholar]
  13. Laude H. Mapping epitope on coronavirus glycoproteins. Adv. Exp. Med. Biol. 1990 doi: 10.1007/978-1-4684-5823-7_20. (in press). [DOI] [PubMed] [Google Scholar]
  14. Laude H., Chapsal J.M., Gelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
  15. Laude H., Rasschaert D., Huet J.C. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  16. Lenstra J.A., Kusters J.G., Koch G., van der Zeijst B.A.M. Antigenicity of the peplomer protein of infectious bronchitis virus. Mol. Immunol. 1989;26:7–15. doi: 10.1016/0161-5890(89)90014-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. J. Virol. 1989;63:1408–1412. doi: 10.1128/jvi.63.3.1408-1412.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Machamer C.E., Florkiewicz R.Z., Rose J.K. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport pf vesicular stomatitis virus G protein to the cell surface. Mol. Cell. Biol. 1985;5:3074–3083. doi: 10.1128/mcb.5.11.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Niemann H., Boschek B., Evans D., Rosing M., Tamura T., Klenk H.-D. Post-translational glycosylation of coronavirus glycoprotein E1: inhibition by monensin. Eur. Mol. Biol. Organ. J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Niman H.L., Elder J.H. Structural analysis of rauscher virus gp70 using monoclonal antibodies: sites of antigenicity and P15(E) linkage. Virology. 1982;123:187–205. doi: 10.1016/0042-6822(82)90305-1. [DOI] [PubMed] [Google Scholar]
  21. Posthumus W.P.A., Lenstra J.A., Schaaper W.M.M., van Nieuwstadt A.P., Enjuanes L., Meloen R.H. Analysis and simulation of a neutralizing epitope of transmissible gastroenteritis virus. J. Virol. 1990;64:3304–3309. doi: 10.1128/jvi.64.7.3304-3309.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rasschaert D., Laude H. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
  23. Rottier P.J.M., Horzinek M.C., van der Zeijst B.A.M. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. J. Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Routledge E., Stauber R., Pfleiderer M., Siddell S.G. Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. J. Virol. 1991;65:254–262. doi: 10.1128/jvi.65.1.254-262.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Skehel J.J., Stevens D.J., Daniels R.S., Douglas A.R., Knossow M, Wilson I.A., Wiley D.C. Vol. 81. 1984. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody; pp. 1779–1783. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  27. Stern D.F., Sefton B.M. Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J. Virol. 1982;44:804–812. doi: 10.1128/jvi.44.3.804-812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sturman L., Holmes K. The novel glycoproteins of coronaviruses. Trends Biochem. Sci. 1985;10:17–20. [Google Scholar]
  29. Tarentino A.L., Trimble R.B., Plummer T.H., Jr. Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins. Methods Cell Biol. 1989;32:111–139. doi: 10.1016/s0091-679x(08)61169-3. [DOI] [PubMed] [Google Scholar]
  30. Tooze S.A., Stanley K.K. Identification of two epitopes in the carboxylterminal 15 amino acids of the El glycoprotein of mouse hepatitis virus A59 by using hybrid proteins. J. Virol. 1986;60:928–934. doi: 10.1128/jvi.60.3.928-934.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tooze S.A., Tooze J., Warren G. Site of addition of N-acetyl-galactosamine to the El glycoprotein of mouse hepatitis virus-A59. J. Cell Biol. 1988;106:1475–1487. doi: 10.1083/jcb.106.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES