Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;11(2):141–150. doi: 10.1016/0168-1702(88)90039-1

Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes

David Cavanagh 1,, Philip J Davis 1, APAdrian Mockett 1
PMCID: PMC7134048  PMID: 2462314

Abstract

The spike glycoprotein (S) gene of IBV codes for a precursor protein which is cleaved into the N-terminal S1 and C-terminal S2 glycopolypeptides. The S1 glycopolypeptide, which induces neutralizing antibody, comprises approximately 520 amino acid residues. We have determined the nucleotide sequence of S1 of seven strains of the Massachusetts (Mass) serotype and the first 337 bases of two additional Mass strains. Despite the fact that the strains had been isolated over three decades in Europe and the U.S.A. there was only 4% base and 6% amino acid variation within the group. Nearly one third of the 32 amino acid differences in S1 were in two hypervariable regions (HVRs 1 and 2) comprising residues 38–51 and 99–115, identified by Niesters et al. (1986), showing that HVRs 1 and 2 are a feature of the Mass serotype. Amino acid variation within HVRs 1 and 2 was 29% and 40% respectively. Five vaccine strains could be distinguished from each other by sequencing of the first 337 nucleotides. Variants of M41 which resisted neutralization by two monoclonal antibodies (A13 and A38) had the same, single base change at position 134, resulting in substitution of proline residue 45 by histidine. This indicates that residues within HVR 1 are associated with epitopes which induce neutralizing antibody.

Keywords: Coronavirus IBV, Neutralization, Epitope, Variation

References

  1. Binns M.M., Boursnell M.E.G., Cavanagh D., Pappin D.J.C., Brown T.K.D. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  2. Binns M.M., Boursnell M.E.G., Tomley F.M., Brown T.D.K. Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beaudette. J. Gen. Virol. 1986;67:2825–2831. doi: 10.1099/0022-1317-67-12-2825. [DOI] [PubMed] [Google Scholar]
  3. Cavanagh D. Coronavirus IBV: structural characterization of the spike protein. J. Gen. Virol. 1983;64:2577–2583. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
  4. Cavanagh D., Darbyshire J.H., Davis P., Peters R.W. Induction of humoral neutralising and haemagglutination-inhibiting antibody by the spike protein of avian infectious bronchitis virus. Avian Pathol. 1984;13:573–583. doi: 10.1080/03079458408418556. [DOI] [PubMed] [Google Scholar]
  5. Cavanagh D., Davis P.J., Darbyshire J.H., Peters R.W. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J. Gen. Virol. 1986;67:1435–1442. doi: 10.1099/0022-1317-67-7-1435. [DOI] [PubMed] [Google Scholar]
  6. Cavanagh D., Davis P.J., Pappin D.J.C., Binns M.M., Boursnell M.E.G., Brown T.D.K. Coronavirus IBV; partial amino-terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res. 1986;4:133–143. doi: 10.1016/0168-1702(86)90037-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cavanagh D., Davis P.J. Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J. Gen. Virol. 1988;69:621–629. doi: 10.1099/0022-1317-69-3-621. [DOI] [PubMed] [Google Scholar]
  8. Cook J.K.A., Muggins M.B. Newly isolated serotypes of infectious bronchitis virus: their role in disease. Avian Pathol. 1986;15:129–138. doi: 10.1080/03079458608436272. [DOI] [PubMed] [Google Scholar]
  9. Cook J.K.A., Darbyshire J.H., Peters R.W. The use of chicken tracheal organ cultures for the isolation and assay of avian infectious bronchitis virus. Arch. Virol. 1976;50:109–118. doi: 10.1007/BF01318005. [DOI] [PubMed] [Google Scholar]
  10. Darbyshire J.H., Rowell J.G., Cook J.K.A., Peters R.W. Taxonomic studies on strains of avian infectious bronchitis virus using neutralisation tests in tracheal organ cultures. Arch. Virol. 1979;61:227–238. doi: 10.1007/BF01318057. [DOI] [PubMed] [Google Scholar]
  11. Jacobs L., de Groot R., van der Zeijst B.A.M., Horzinek M.C., Spaan W. The nucleotide sequence of the peplomer gene of porcine transmissable gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV) Virus Res. 1987;8:363–371. doi: 10.1016/0168-1702(87)90008-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., van der Zeijst B.A.M., Horzinek M.C., Spaan W.J.M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacDonald J.W., McMartin D.A. Observations on the effects of the H52 and H120 vaccine strains of infectious bronchitis virus in the domestic fowl. Avian Pathol. 1976;5:157–173. doi: 10.1080/03079457608418182. [DOI] [PubMed] [Google Scholar]
  14. Mockett A.P.A., Cavanagh D., Brown T.D.K. Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain Massachusetts M41. J. Gen. Virol. 1984;65:2281–2286. doi: 10.1099/0022-1317-65-12-2281. [DOI] [PubMed] [Google Scholar]
  15. Niesters H.G.M. University of Utrecht; The Netherlands: 1987. Molecular epidemiology of infectious bronchitis virus. (Ph.D. thesis). [DOI] [PubMed] [Google Scholar]
  16. Niesters H.G.M., Lenstra J.A., Spaan W.J.M., Zijderveld A.J., Bleumink-Pluym N.M.C., Hong F., van Scharrenburg G.J.M., Horzinek M.C., van der Zeijst B.A.M. The peplomer protein of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Res. 1986;5:253–263. doi: 10.1016/0168-1702(86)90022-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Novotny J., Handschumacher M., Bruccoleri R.E. Protein antigenicity: a static surface property. Immunol. Today. 1987;8:26–31. doi: 10.1016/0167-5699(87)90828-0. [DOI] [PubMed] [Google Scholar]
  18. Scheid A., Choppin P.W. Protease activation mutants of Sendai virus. Activation of biological properties by specific proteases. Virology. 1976;69:265–277. doi: 10.1016/0042-6822(76)90213-0. [DOI] [PubMed] [Google Scholar]
  19. Schulz G.E., Shirmer R.H. Springer-Verlag; New York: 1979. Principles of protein structure. [Google Scholar]
  20. Van Regenmortel M.H.V. Antigenic cross-reactivity between proteins and peptides: new insights and applications. Trends Biochem. Sci. 1987;12:237–240. [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES