Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 11;2(4):177–190. doi: 10.1016/0166-3542(82)90041-9

Viral glycoprotein metabolism as a target for antiviral substances

Hans-Dieter Klenk 1, Ralph T Schwarz 1
PMCID: PMC7134050  PMID: 6184015

The content is available as a PDF (907.0 KB).

References

  • 1.Blough H.A., Giuntoli R.L. Successful treatment of human genital herpes infections with 2-deoxy-D-glucose. J. Am. Med. Assoc. 1979;241:2798–2801. [PubMed] [Google Scholar]
  • 2.Bortfeldt K. Dissertation (Fachbereich Human-medizin der Justus-Liebig-Universität Giessen) 1974. Hemmung der durch Paramyxoviren SV5 and NDV induzierten Fusion von BHK21-F-Zellen durch 2-Deoxy-D-Glucose und Glucosamin. [Google Scholar]
  • 3.Campadelli-Fiume G., Sinibaldi-Vallebona P., Cavrini V., Mannini-Palenzona A. Selective inhibition of herpes simplex virus glycoprotein synthesis by a benz-amidino-hydrazone derivative. Arch. Virol. 1980;66:179–181. doi: 10.1007/BF01314732. [DOI] [PubMed] [Google Scholar]
  • 4.Cash P., Hendershat L., Bishop D.H.L. The effects of glycosylation inhibitors on the maturation and intracellular polypeptide synthesis induced by Snowshoe hare bunyavirus. Virology. 1980;103:235–240. doi: 10.1016/0042-6822(80)90142-7. [DOI] [PubMed] [Google Scholar]
  • 5.Chatis P.A., Morrison T.G. Mutational changes in the vesicular stomatitis virus glycoprotein affect the requirement of carbohydrate in morphogenesis. J. Virol. 1981;37:307–316. doi: 10.1128/jvi.37.1.307-316.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Chatterjee S., Kwiterovich P.O., Sekerke C.S. Effects of tunicamycin on the binding and degradation of low density lipoproteins and glycoprotein synthesis in cultured human fibroblasts. J. Biol. Chem. 1979;254:3704–3707. [PubMed] [Google Scholar]
  • 7.Compans R.W., Klenk H.-D. Vol. 13. Plenum Publishing Co; New York: 1979. Viral Membranes; pp. 293–407. (Comprehensive Virology). [Google Scholar]
  • 8.Courtney R.J., Steiner S.M., Benyesh-Melnick M. Effects of 2-deoxy-D-glucose on herpes simplex virus replication. Virology. 1973;52:447–455. doi: 10.1016/0042-6822(73)90340-1. [DOI] [PubMed] [Google Scholar]
  • 9.Datema R., Schwarz R.T. Formation of 2-deoxy-glucose-containing lipid-linked oligosaccharides. Interference with glycosylation of glycoproteinsEur. J. Biochem. 1978;90:505–516. doi: 10.1111/j.1432-1033.1978.tb12630.x. [DOI] [PubMed] [Google Scholar]
  • 10.Datema R., Schwarz R.T. Interference with glycosylation of glycoproteins. Inhibition of formation of lipid-linked oligosaccharides in vivoBiochem. J. 1979;184:113–123. doi: 10.1042/bj1840113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Datema R., Schwarz R.T. CCCP effect of energydepletion on the glycosylation of a viral glycoprotein. J. Biol. Chem. 1981;256:1191–1198. [PubMed] [Google Scholar]
  • 12.Datema R., Pont Lezica R., Robbins P.W., Schwarz R.T. Deoxyglucose inhibition of protein glycosylation: effects of nucleotide deoxysugars on the formation of glycosylated lipid intermediates. Arch. Biochem. Biophys. 1981;206:65–71. doi: 10.1016/0003-9861(81)90066-7. [DOI] [PubMed] [Google Scholar]
  • 13.Datema R., Schwarz R.T., Jankowski A.W. Fluoroglucose-inhibition of protein glycosylation in vivo. Inhibition of mannose and glucose incorporation into lipid-linked oligosaccharidesEur. J. Biochem. 1980;109:331–341. doi: 10.1111/j.1432-1033.1980.tb04799.x. [DOI] [PubMed] [Google Scholar]
  • 14.Datema R., Schwarz R.T., Winkler J. Glycosylation of influenza virus proteins in the presence of fluoroglucose occurs via a different pathway. Eur. J. Biochem. 1980;110:355–361. doi: 10.1111/j.1432-1033.1980.tb04875.x. [DOI] [PubMed] [Google Scholar]
  • 15.Duda E., Schlesinger M.J. Alteration in Sindbis viral envelope proteins by treating BHK-cells with glucosamine. J. Virol. 1975;15:416–419. doi: 10.1128/jvi.15.2.416-419.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Elbein A.D., Gafford J., Kang M.S. Inhibition of lipid-linked saccharide synthesis: comparison of tunicamycin, streptovirudin, and antibiotic 24010. Arch. Biochem. Biophys. 1979;196:311–318. doi: 10.1016/0003-9861(79)90583-6. [DOI] [PubMed] [Google Scholar]
  • 17.Etchison J.R., Holland J.J. Carbohydrate composition of the membrane glycoprotein of vesicular stomatitis virus. Virology. 1974;60:217–229. doi: 10.1016/0042-6822(74)90379-1. [DOI] [PubMed] [Google Scholar]
  • 18.Gallaher W.R., Levitan D.B., Blough H.A. Effect of 2-deoxy-D-glucose on cell fusion induced by Newcastle disease and herpes simplex viruses. Virology. 1973;55:193–201. doi: 10.1016/s0042-6822(73)81021-9. [DOI] [PubMed] [Google Scholar]
  • 19.Gandhi S.S., Stanley P., Taylor J.M., White D.O. Inhibition of influenza viral glycoprotein synthesis by sugars. Microbios. 1972;5:41–50. [PubMed] [Google Scholar]
  • 20.Garoff H., Schwarz R.T. Glycosylation is not necessary for correct membrane insertion and cleavage of the Semliki Forest virus membrane proteins. Nature. 1978;274:487–490. doi: 10.1038/274487a0. [DOI] [PubMed] [Google Scholar]
  • 21.Gibson R., Leavitt R., Kornfeld S., Schlesinger S. Synthesis and infectivity of vesicular stomatitis virus containing non-glycosylated G protein. Cell. 1978;13:671–679. doi: 10.1016/0092-8674(78)90217-9. [DOI] [PubMed] [Google Scholar]
  • 22.Gibson R., Schlesinger S., Kornfeld S. The non-glycosylated glycoprotein of vesicular stomatitis virus is temperature sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 1979;254:3600–3607. [PubMed] [Google Scholar]
  • 23.Grinna L.S., Robbins P.W. Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharidesJ. Biol. Chem. 1979;254:8814–8818. [PubMed] [Google Scholar]
  • 24.Grinna L.S., Robbins P.W. Substrate specificities of rat liver microsomal glucosidases which process glycoproteins. J. Biol. Chem. 1980;255:2255–2258. [PubMed] [Google Scholar]
  • 25.Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Hubbard S.C., Ivatt R.J. Synthesis of the N-linked oligosaccharides of glycoproteins: assembly of the lipid-linked precursor oligosaccharide and its relation to protein synthesis in vivo. Annu. Rev. Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  • 27.Hunter E., Friis R.R., Vogt P.K. Inhibition of avian sarcoma virus replication by glucosamine. Virology. 1974;58:449–456. doi: 10.1016/0042-6822(74)90079-8. [DOI] [PubMed] [Google Scholar]
  • 28.Kaluza G. Effect of impaired glycosylation on the biosynthesis of Semliki Forest virus glycoproteins. J. Virol. 1975;16:602–612. doi: 10.1128/jvi.16.3.602-612.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kaluza G. Early synthesis of Semliki Forest virus-specific proteins in infected chicken cells. J. Virol. 1976;19:1–12. doi: 10.1128/jvi.19.1.1-12.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kaluza G., Scholtissek C., Rott R. Inhibition of the multiplication of enveloped RNA viruses by glucosamine and 2-deoxy-D-glucose. J. Gen. Virol. 1972;14:251–259. doi: 10.1099/0022-1317-14-3-251. [DOI] [PubMed] [Google Scholar]
  • 31.Kaluza G., Schmidt M.F.G., Scholtissek C. Effect of 2-deoxy-D-glucose on the multiplication of Semliki Forest virus and the reversal of the block by mannose. Virology. 1973;54:179–189. doi: 10.1016/0042-6822(73)90127-x. [DOI] [PubMed] [Google Scholar]
  • 32.Kaluza G., Rott R., Schwarz R.T. Carbohydrate induced conformational changes of Semliki Forest virus glycoproteins determine antigenicity. Virology. 1980;102:286–299. doi: 10.1016/0042-6822(80)90096-3. [DOI] [PubMed] [Google Scholar]
  • 33.Katz E., Margalith E., Duksin D. Antiviral activity of tunicamycin on herpes simplex virus. Antimicrob. Agents Chemother. 1980;17:1014–1022. doi: 10.1128/aac.17.6.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Kilbourne E.D. Inhibition of influenza virus multiplication with a glucose antimetabolite (2-deoxy-D-glucose) Nature. 1959;183:271–272. doi: 10.1038/183271b0. [DOI] [PubMed] [Google Scholar]
  • 35.Klenk H.-D., Rott R. Cotranslational and posttranslational processing of viral glycoproteins. Curr. Top. Microbiol. Immunol. 1980;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  • 36.Klenk H.-D., Scholtissek C., Rott R. Inhibition of glycoprotein biosynthesis of influenza virus by D-glucosamine and 2-deoxy-D-glucose. Virology. 1972;49:723–734. doi: 10.1016/0042-6822(72)90529-6. [DOI] [PubMed] [Google Scholar]
  • 37.Klenk H.-D., Wöllert W., rott R., Scholtissek C. Association of influenza virus proteins with cytoplasmic fractions. Virology. 1974;57:28–41. doi: 10.1016/0042-6822(74)90105-6. [DOI] [PubMed] [Google Scholar]
  • 38.Klenk H.-D., Garten W., Keil W., Niemann H., Bosch F.X., Schwarz R.T., Scholtissek C., Rott R. Processing of the influenza virus hemagglutinin. In: Nayak D., Fox C.F., editors. Genetic Variation among Influenza Viruses. Academic Press; New York: 1981. pp. 193–211. [Google Scholar]
  • 39.Klenk H.-D., Garten W., Bosch F.X., Rott R. Viral glycoproteins as determinants of pathogenicity. Med. Microbiol. Immunol. 1982;170:145–153. doi: 10.1007/BF02298195. [DOI] [PubMed] [Google Scholar]
  • 40.Koch H.U., Schwarz R.T., Scholtissek C. Glucosamine itself mediates reversible inhibition of protein glycosylation. A study of glucosamine metabolism at inhibitory concentrations in influenza virus-infected cellsEur. J. Biochem. 1978;94:512–522. doi: 10.1111/j.1432-1033.1979.tb12920.x. [DOI] [PubMed] [Google Scholar]
  • 41.Kornfeld S., Li B., Tabas I. The synthesis of complex-type oligosaccharides. III. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G. protein. J. Biol. Chem. 1978;253:7771–7778. [PubMed] [Google Scholar]
  • 42.Knowles R.W., Person S. Effects of 2-deoxy-glucose, glucosamine and mannose on cell fusion and the glycoprotein of herpes simplex virus. J. Virol. 1976;18:644–651. doi: 10.1128/jvi.18.2.644-651.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Leavitt R., Schlesinger S., Kornfeld S. Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis virus. J. Virol. 1977;21:375–385. doi: 10.1128/jvi.21.1.375-385.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Lehle L., Tanner W. The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett. 1976;71:167–170. doi: 10.1016/0014-5793(76)80922-2. [DOI] [PubMed] [Google Scholar]
  • 45.Leon M.E., Coto C.E. Glucosamina; su accion sobre la multiplication del virus Junin. Medicina (Buenos Aires) 1977;37:501–502. [Google Scholar]
  • 46.Ludwig H., Becht H., Rott R. Inhibition of herpes virus-induced cell fusion by concanavalin A, antisera, and 2-deoxy-D-glucose. J. Virol. 1974;14:307–314. doi: 10.1128/jvi.14.2.307-314.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Nakamura K., Compans R.W. Effects of glucosamine, 2-deoxy-D-glucose, and tunicamycin on glycosylation, sulfation and assembly of influenza viral proteins. Virology. 1978;84:303–379. doi: 10.1016/0042-6822(78)90250-7. [DOI] [PubMed] [Google Scholar]
  • 48.Nakamura K., Compans R.W. Host-cell and strain-dependent differences in oligosaccharides of hemagglutinin glycoproteins of influenza A viruses. Virology. 1979;95:8–23. doi: 10.1016/0042-6822(79)90397-0. [DOI] [PubMed] [Google Scholar]
  • 49.Niemann H., Klenk H.-D. Coronavirus glycoprotein E1, a new type of viral glycoprotein. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Pan Y.T., Elbein A.D. The formation of lipid-linked oligosaccharides in Madin-Darby canine kidney cells. J. Biol. Chem. 1982;257:2795–2801. [PubMed] [Google Scholar]
  • 51.Payne L.G., Kristensson K. Effect of glycosylation inhibitors on the release of enveloped vaccinia virus. J. Virol. 1982;41:367–375. doi: 10.1128/jvi.41.2.367-375.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Ray E.K., Levitan D.B., Halpern B.L., Blough H.A. A new approach to viral chemotherapy. Inhibitors of glycoprotein synthesisLancet. 1274;2:680–683. doi: 10.1016/s0140-6736(74)93261-9. [DOI] [PubMed] [Google Scholar]
  • 53.Rose J.K., Iverson L.E., Gallione C.P., Greene J.R. Vesicular stomatitis virus gene structure and transcription. In: Bishop D.H.L., Compans R.W., editors. The Replication of Negative Strand Viruses. 1981. pp. 713–720. [Google Scholar]
  • 54.Rottier P.J.M., Horzinek M.C., Van der Zeijst B.A.M. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. J. Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Schmidt M.F.G., Schwarz R.T., Ludwig H. Fluorosugars inhibit biological properties of different enveloped viruses. J. Virol. 1976;18:819–823. doi: 10.1128/jvi.18.3.819-823.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Schmidt M.F.G., Schwarz R.T., Scholtissek C. Interference of nucleoside diphosphate derivatives of 2-deoxy-d-glucose with the glycosylation of virus-specific glycoproteins in vivo. Eur. J. Biochem. 1976;70:55–62. doi: 10.1111/j.1432-1033.1976.tb10955.x. [DOI] [PubMed] [Google Scholar]
  • 57.Scholtissek C. Inhibition on the multiplication of enveloped viruses by glucose derivatives. Curr. Top. Microbiol. Immunol. 1975;70:101–119. doi: 10.1007/978-3-642-66101-3_4. [DOI] [PubMed] [Google Scholar]
  • 58.Schwarz R.T., Klenk H.-D. Inhibition of glycosylation of the influenza virus hemagglutinin. J. Virol. 1974;14:1023–1034. doi: 10.1128/jvi.14.5.1023-1034.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Schwarz R.T., Klenk H.-D. Carbohydrates of influenza virus. IV. Strain-dependent variations. Virology. 1981;113:584–593. doi: 10.1016/0042-6822(81)90186-0. [DOI] [PubMed] [Google Scholar]
  • 60.Schwarz R.T., Datema R. Inhibition of lipid glycosylation. In: Horowitz, editor. Vol. II. 1982. pp. 47–79. (The Glycoconjugates). [Google Scholar]
  • 61.Schwarz R.T., Datema R. The lipid pathway of protein glycosylation, its inhibitors, and the biological significance of protein-bound carbohydrates. Adv. Carbohydr. Chem. Biochem. 1982 doi: 10.1016/s0065-2318(08)60111-0. (in press) [DOI] [PubMed] [Google Scholar]
  • 62.Schwarz R.T., Schmidt M.F.G. Tunicamycin in virology. In: Tamura G., editor. Tunicamycin. Japan Scientific Societies Press; Tokyo: 1982. pp. 99–116. [Google Scholar]
  • 63.Schwarz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki Forest virus by tunicamycin. J. Virol. 1976;19:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Schwarz R.T., Schmidt M.F.G., Lehle L. In vitro glycosylation of Semliki Forest and influenza virus glycoproteins and its suppression by nucleotide 2-deoxy-sugar. Eur. J. Biochem. 1978;85:163–172. doi: 10.1111/j.1432-1033.1978.tb12224.x. [DOI] [PubMed] [Google Scholar]
  • 65.Shida H., Dales S. Biogenesis of vaccinia: carbohydrate of the hemagglutinin molecule. Virology. 1981;111:56–72. doi: 10.1016/0042-6822(81)90653-x. [DOI] [PubMed] [Google Scholar]
  • 66.Takatsuki A., Tamura G. Tunicamycin, a new antibiotic. II. Some biological properties of the antiviral activity of tunicamycin. J. Antibiot. 1971;24:224–231. [PubMed] [Google Scholar]
  • 67.Takatsuki A., Kohno K., Tamura G. Inhibition of biosynthesis of polyisoprenolsugars in chick embryo microsomes by tunicamycin. Agric. Biol. Chem. 1975;39:2089–2091. [Google Scholar]
  • 68.Tartakoff A.M. The golgi complex: cross roads for vesicular traffic. Int. Rev. Exp. Pathol. 1980;22:227. [PubMed] [Google Scholar]
  • 69.Tkacz J.S., Lampen J.O. Tunicamycin inhibition of polyisoprenol, N-acetylglucosaminyl pyrophosphate formation in calf liver microsomes. Biochem. Biophys. Res. Commun. 1975;65:248–257. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
  • 70.Ward C.W. Structure of influenza virus hemagglutinin. Curr. Top. Microbiol. Immunol. 1981;94:1–74. doi: 10.1007/978-3-642-68120-2_1. [DOI] [PubMed] [Google Scholar]
  • 71.Wilson I.A., Skehel J.J., Wiley D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature. 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]

Articles from Antiviral Research are provided here courtesy of Elsevier

RESOURCES