Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2000 Feb 25;36(2):119–130. doi: 10.1016/0168-1702(94)00108-O

Quantification of individual subgenomic mRNA species during replication of the coronavirus transmissible gastroenteritis virus

Julian A Hiscox 1, David Cavanagh 1, Paul Britton 1,∗,1
PMCID: PMC7134076  PMID: 7653093

Abstract

A biotinylated-oligonucleotide-based method was used to isolate the subgenomic mRNAs of the coronavirus transmissible gastroenteritis virus (TGEV) to investigate the amounts of the mRNAs produced at early, middle and late times in the replication cycle. TGEV mRNA 6, which encodes the N protein, was observed to be the most abundant species throughout the replication cycle. The ratios of mRNA 6 to the other mRNAs were 1:0.11 (mRNA 2), 1:0.16 (mRNAs 3 and 4) and 1:0.37 (mRNA 5) at 12 h post-infection. All the mRNA species were differentially regulated throughout the replication cycle, although the rate of accumulation of mRNAs 4, 5, and 6, but not mRNA 3, increased markedly towards the end of the replication cycle. mRNA 7 was not detected in the system used. There was no observable correlation between the amounts of each mRNA synthesised and the potential degree of base pairing between the 3′ end of the leader sequence and the transcription associated sequences on the genomic RNA at any time during the replication cycle. This indicates that the extent of base pairing was not the only factor involved in the control of subgenomic mRNA synthesis.

Keywords: TGEV, Coronavirus, Porcine, mRNA, Leader RNA, Transcription

References

  1. Britton P., Carmenes R.S., Page K.W., Garwes D.J., Parra F. Sequence of the nucleoprotein from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Mol. Microbiol. 1988;2:89–99. [PubMed] [Google Scholar]
  2. Britton P., Mawditt K.L., Page K.W. The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronavirus: comparison with transmissible gastroenteritis virus genes. Virus Res. 1991;21:181–198. doi: 10.1016/0168-1702(91)90032-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Britton P., Page K.W. Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus. Virus Res. 1990;18:71–80. doi: 10.1016/0168-1702(90)90090-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Budzilowicz C.J., Wilcynski S.P., Weiss S.R. Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3′ end of the viral mRNA leader sequence. J. Virol. 1985;53:834–840. doi: 10.1128/jvi.53.3.834-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chamberlain J.P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal. Biochem. 1979;98:132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Compton S.R., Rogers D.B., Holmes K.V., Fertsch D., Remenick J., McGowan J.J. In vitro replication of mouse hepatitis virus strain A59. J. Virol. 1987;61:1814–1820. doi: 10.1128/jvi.61.6.1814-1820.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. de Groot R.J., ter Haar R.J., Horzinek M.C., van der Zeijst B.A. Intracellular RNAs of the feline infectious peritonitis coronavirus strain 791146. J. Gen. Virol. 1987;68:995–1002. doi: 10.1099/0022-1317-68-4-995. [DOI] [PubMed] [Google Scholar]
  9. Ekenberg S., McKormick M., Smith C. Promega Notes. 1992;39:7–10. [Google Scholar]
  10. Godet M., L'Haridon R., Vautherot J.-F., Laude H. TGEV coronavirus ORF-4 encodes a membrane protein that is incorporated into virions. Virology. 1992;188:666–675. doi: 10.1016/0042-6822(92)90521-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hofmann M.A., Sethna P.B., Brian D.A. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. J. Virol. 1990;64:4108–4114. doi: 10.1128/jvi.64.9.4108-4114.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hofmann M., Wyler R. Propagation of the virus of porcine epidemic diarrhoea in cell culture. J. Clin. Microbiol. 1988;26:2235–2239. doi: 10.1128/jcm.26.11.2235-2239.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horsburgh B.C., Brierley I., Brown T.D.K. Analysis of a 9.6 kb sequence from the 3′ end of canine coronavirus genomic RNA. J. Gen. Virol. 1992;73:2849–2862. doi: 10.1099/0022-1317-73-11-2849. [DOI] [PubMed] [Google Scholar]
  14. Jacobs L., Van Der Zeijst B.A.M., Horzinek M.C. Characterization and translation of transmissible gastroenteritis virus mRNAs. J. Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jeong Y.S., Makino S. Mechanism of coronavirus transcription: duration of primary transcription initiation activity and effects of subgenomic RNA transcription on RNA replication. J. Virol. 1992;66:3339–3346. doi: 10.1128/jvi.66.6.3339-3346.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lai M.M.C. Coronavirus—organization, replication and expression of genome. Annu. Rev. Microbiol. 1990;44:303–333. doi: 10.1146/annurev.mi.44.100190.001511. [DOI] [PubMed] [Google Scholar]
  17. Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Vol. 81. 1984. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus; pp. 3626–3630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lai M.M.C., Stohlman S.A. The RNA of mouse hepatitis virus. J. Virol. 1978;26:236–242. doi: 10.1128/jvi.26.2.236-242.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Page K.W., Britton P., Boursnell M.E.G. Sequence analysis of the leader RNA of two porcine coronaviruses: transmissible gastroenteritis virus and porcine respiratory coronavirus. Virus Genes. 1990;4:289–301. doi: 10.1007/BF00570024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Page K.W., Mawditt K.L., Britton P. Sequence comparison of the 5′-end of mRNA 3 from transmissible gastroenteritis virus and porcine respiratory coronavirus. J. Gen. Virol. 1991;72:579–587. doi: 10.1099/0022-1317-72-3-579. [DOI] [PubMed] [Google Scholar]
  21. Sambrook J., Fritsch E.F., Maniatis T. Cold Spring Harbor Laboratory; New York: 1989. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  22. Sawicki S.G., Sawicki D.L. Coronavirus transcription—subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J. Virol. 1990;64:1050–1056. doi: 10.1128/jvi.64.3.1050-1056.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sethna P.B., Hofmann M.A., Brian D.A. Minus-strand copies of replicating coronavirus mRNAs contain anti leaders. J. Virol. 1991;65:320–325. doi: 10.1128/jvi.65.1.320-325.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sethna P.B., Hung S.L., Brian D.A. Vol. 86. 1989. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons; pp. 5626–5630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shieh C.K., Soe L.H., Makino S.J., Chang M.F., Stohlman S.A., Lai M.M.C. The 5′-end sequence of the murine coronavirus genome—implications for mor multiple fusion sites in leader-primed transcription. Virology. 1987;156:321–330. doi: 10.1016/0042-6822(87)90412-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van der Most R.G., de Groot R.J., Spaan W.J.M. Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of coronavirus transcription initiation. J. Virol. 1994;68:3656–3666. doi: 10.1128/jvi.68.6.3656-3666.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wesley R.D., Cheung A.K., Michael D.D., Woods R.D. Nucleotide sequence of coronavirus TGEV genomic RNA: evidence for 3 mRNA species between the peplomer and matrix protein genes. Virus Res. 1989;13:87–100. doi: 10.1016/0168-1702(89)90008-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yokomori K., Banner L.R., Lai M.M.C. Coronavirus mRNA transcription: UV light transcriptional mapping studies suggest an early requirement for a genomic-lenght template. J. Virol. 1992;66:4671–4678. doi: 10.1128/jvi.66.8.4671-4678.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES