Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;34(3):327–338. doi: 10.1016/0168-1702(94)90132-5

Evolutionary implications of genetic variations in the S1 gene of infectious bronchitis virus

Wang Li a, Dave Junker b, Lisa Hock b, Elham Ebiary a, Ellen W Collisson a,
PMCID: PMC7134089  PMID: 7856318

Abstract

The large number of phenotypically distinct strains of infectious bronchitis virus (IBV) provide a broad genetic background for examining naturally occurring coronavirus variation. Comparisons of the published nucleotide sequence of S1 genes of strains isolated in Europe, Japan and the USA and four additional American strains described in this report identified 4 genetically distinct groups. The Dutch group was the most divergent sharing only about 60% identity with the American, Mass and European groups which were about 80% homologous with each other. Whereas the strains within the Mass, European and Dutch strains were at least 95% homologous, the strains within the American group were most variable, sharing about 80% identity. The hypervariable region (HVR) which tended to correlate with serotype extended from amino acid residue 53 to 148. In addition to the previously described putative recombination events in the S1 gene of PP14 and SE17, we have now described similar shifts in homology in the corresponding gene of the Gray, Holte, 6/82 (European strain), and Iowa strains. Although minor cross-over sites were identified in the more conserved 3' end at approximately nt 1000 and 1400, a frequently used hot-spot for recombination extended from nt 25 to a region immediately upstream of, but not including, the hypervariable region (HVR). In addition to point mutations, deletions, and insertions, recombination often involving Mass-like and Ark-like sequences, is a commonly used mechanism responsible for the evolution of IBV.

Keywords: Infectious bronchitis virus, IBV, S1 gene, Recombination, Mutation, Evolution

References

  1. Banner L.R., Lai M.C. Random nature of Coronavirus RNA recombination in the absence of selection pressure. Virology. 1991;185:441–445. doi: 10.1016/0042-6822(91)90795-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaudette F.R., Hudson C.B. Cultivation of the virus of infectious bronchitis. J. Am. Vet. Med. Assoc. 1937;90:51–60. [Google Scholar]
  3. Binns M.M., Boursnell M.E.G., Cavanagh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen Virol. 1985;66:719–926. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  4. Butcher G., Gelb J., Collisson E. Comparisons of the genomic RNA of Arkansas DPI embryonic passages 10 and 100, Australian T, and Massachusetts 41 strains of infectious bronchitis virus. Avian Dis. 1990;34:253–259. [PubMed] [Google Scholar]
  5. Cavanagh D., Davis P.J. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J. Gen. Virol. 1986;67:1443–1448. doi: 10.1099/0022-1317-67-7-1443. [DOI] [PubMed] [Google Scholar]
  6. Cavanagh D., Davis P.J., Cook J., Li D. Molecular basis of the variation exhibited by avian infectious bronchitis coronavirus (IBV) In: Cavanagh D., Brown T.D.K., editors. Coronaviruses and Their Diseases. Plenum Press; New York: 1991. pp. 369–372. [DOI] [PubMed] [Google Scholar]
  7. Cavanagh D., Davis P.J., Mockett A.P.A. Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res. 1988;11:141–150. doi: 10.1016/0168-1702(88)90039-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Clewley J.P., Morser J., Avery R.J., Lomniczi B. Oligonucleotide fingerprinting of the RNA of different strains of infectious bronchitis virus. Infect. Immun. 1981;32:1227–1233. doi: 10.1128/iai.32.3.1227-1233.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cook J.K.A. Isolation of a new serotype of infectious bronchitis-like virus from chickens in England. Vet. Record. 1983;112:104–105. doi: 10.1136/vr.112.5.104. [DOI] [PubMed] [Google Scholar]
  11. Davelaar F.G., Kouwenhoven B., Burger A.G. Occurrence and significance of infectious bronchitis virus variant strains in egg and broiler production in the Netherlands. Vet. Q. 1984;6:114–120. doi: 10.1080/01652176.1984.9693924. [DOI] [PubMed] [Google Scholar]
  12. Field D.B. Arkansas 99, a new infectious bronchitis serotype. Avian Dis. 1973;17:659–661. [PubMed] [Google Scholar]
  13. Gelb J., Jr. nfectious bronchitis. In: Purchase, editor. A Laboratory Manual for the Isolation and Identification of Avian Pathogens. 3rd ed. Dendall/Hunt; 1989. pp. 124–127. [Google Scholar]
  14. Hofstad M.S. Antigentic differences among isolates of avian infectious bronchitis virus. Am. J. Vet. Res. 1958;19:740–743. [PubMed] [Google Scholar]
  15. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  16. Hopkins S.R. Serologie and immunologie properties of a recent isolate of infectious bronchitis virus. Avian Dis. 1969;13:356–362. [PubMed] [Google Scholar]
  17. Jungherr E.L., Chomiak T.W., Luginbuhl R.E. Proc. 60th Annu. Meeting. US Livestock San. Assoc; 1956. Immunologie differences in strains of infectious bronchitis virus; pp. 203–209. [Google Scholar]
  18. Koch G., Cavanagh D. Proceedings of II International Symposium on Infectious Bronchitis. 1991. Commentary on session two: IB virus; pp. 191–194. Rauischolzhausen, Germany. June 3–6. [Google Scholar]
  19. Koch G., Kant A. Nucleotide and amino acid sequence of the S1 subunit of the spike glycoprotein of avian infectious bronchitis virus, strain D3896. Nucleic Acids Res. 1990;18:3063–3064. doi: 10.1093/nar/18.10.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Küsters J.G., Niesters H.G.M., Lenstra J.A., Horzinek M.C., Van der Zeijst B.A.M. Phylogeny of antigenic variants of avian coronavirus IBV. Virology. 1989;169:217–221. doi: 10.1016/0042-6822(89)90058-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lai M.M.C. RNA recombination in animal and plant viruses. Microbiol. Rev. 1992;56:61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lai M.M.C., Baric R.S., Makino S., Deck J.G., Egbert J., Leibowitz J.L., Stohlman S.A. The recombination between nonsegmented RNA genomes of murine coronaviruses. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liao C-L., Lai M.M.C. RNA recombination in a coronavirus: Recombination between viral genomic RNA and transfected RNA fragments. J. Virol. 1992;66:6117–6124. doi: 10.1128/jvi.66.10.6117-6124.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Makino S., Keck J.G., Stohlman S.A., Lai M.M.C. High-frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matthew M., Binns M.E.G., Boursnell F.M.T., Brown T.D.K. Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beaudette. J. Gen. Virol. 1986;67:2825–2831. doi: 10.1099/0022-1317-67-12-2825. [DOI] [PubMed] [Google Scholar]
  26. Niesters H.G.M., Lenstra J.A., Spaan W.J.M., Zijderveld A.J., Bleumink-Pluym N.M.C., Hong F., Van Scharrenburg G.J.M., Horzinek M.C., Van de Zeijst B.A.M. The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Res. 1986;5:253–263. doi: 10.1016/0168-1702(86)90022-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Parr R.L., Collisson E.W. Epitopes on the spike protein of a nephropathogenic strain of infectious bronchitis virus. Arch. Virology. 1993;133:369–383. doi: 10.1007/BF01313776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sambrook J., Fritsch E.F., Maniatis T. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 1989. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  29. Sneed L.W., Butcher G.D., Parr R., Wang L., Collisson E.W. Comparison of the structural proteins of avian infections bronchitis virus as determined by western blot analysis. Virol. Immunol. 1989;2:221–227. doi: 10.1089/vim.1989.2.221. [DOI] [PubMed] [Google Scholar]
  30. Sutou S., Sato S., Okabe T., Nakai M., Sasaki N. Cloning and sequencing of genes encoding structural proteins of avian infectious bronchitis virus. Virology. 1988;165:589–595. doi: 10.1016/0042-6822(88)90603-4. [DOI] [PubMed] [Google Scholar]
  31. Van Roekel H., Clarke M.K., Bullis K.L., Olesiuk O.M., Sperling F.G. Infectious bronchitis. Am. J. Vet. Res. 1951;12:140–146. [PubMed] [Google Scholar]
  32. Wang L., Junker D., Collisson E.W. Evidence of natural recombination within the S1 gene of infectious bronchitis virus. Virology. 1993;192:710–716. doi: 10.1006/viro.1993.1093. [DOI] [PubMed] [Google Scholar]
  33. Williams A.K., Wang L., Sneed L.W., Collisson E.W. Comparative analyses of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronaviruses. Virus Res. 1992;25:213–222. doi: 10.1016/0168-1702(92)90135-V. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Winterfield R.W., Hitchner S.B. Etiology of an infectious nephritis-nephrosis syndrome of chickens. Am. J. Vet. Res. 1962;23:1273–1279. [PubMed] [Google Scholar]
  35. Winterfield R.W., Hitchner S.B., Appleton G.S. Immunological characteristics of a variant of infectious bronchitis virus isolated from chickens. Avian Dis. 1964;8(1):40–47. [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES