Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1998 Feb 13;32(3):235–241. doi: 10.1016/S0167-5877(97)00026-3

Effect of husbandry methods on seropositivity to African swine fever virus in Sardinian swine herds

A Mannelli a,, S Sotgia b, C Patta b, A Sarria b, P Madrau b, L Sanna b, A Firinu b, A Laddomada b
PMCID: PMC7134117  PMID: 9443330

Abstract

Multiple logistic regression was used on serological data collected in the context of the Sardinian African swine fever (ASF) eradication program from pig farms in the province of Nuoro, Sardinia. The monthly percentage of ASFV-positive herds decreased significantly from October 1994 through March 1996 (P < 0.001). The farm-level risk of seropositivity to African swine fever virus (ASFV) was higher in free-range farms than in partial-confinement farms (odds ratios (OR) varied between 4.9 in October 1994, and 5.7 in March 1996, P < 0.001). The risk of infection for total-confinement farms was one-fifth of the risk for partial-confinement farms in October 1994 (OR = 0.2, P < 0.001), whereas in March 1996, the estimated OR was 0.57 and not significant (upper confidence limit = 1.1). The maintenance of ASFV in Sardinia was primarily associated with free-range pig farms. The natural logarithm of the number of pigs tested per visit in a farm was positively associated with the risk of herd seropositivity (OR = 2.6, P < 0.001).

References

  1. Austin C.C, Weigel R.M, Hungerford L.L, Biehl L.G. Factors affecting the risk of infection with pseudorabies virus in Illinois swine herds. Prev. Vet. Med. 1993;17:161–173. [Google Scholar]
  2. Bech-Nielsen S, Fernandez J, Martinez-Pereda F, Espinosa J, Perez Bonilla Q, Sanchez-Vizcaino J.M. A case study of an outbreak of African swine fever in Spain. Br. Vet. J. 1995;151:203–214. doi: 10.1016/s0007-1935(95)80012-3. [DOI] [PubMed] [Google Scholar]
  3. Contini A, Cossu P, Firinu A. African swine fever in Sardinia. In: Wilkinson P.J, editor. African Swine Fever. EUR 8466 EN, Pro CEC/FAO research seminar; Sardinia, September 1981; 1982. pp. 1–6. [Google Scholar]
  4. Escribano J.M, Pastor M.J, Arias M, Sanchez-Vizcaino J.M. Confirmacion de sueros positivos a ELISA—peste porcina africana mediante la tecnica de ‘immunoblotting’. Utilizacion de las proteinas inducidas por el virus, con pesos moleculares comprendidos entre 23 y 35 kilodaltons, en el desarrollo de un ‘kit’ de diagnostico. Med. Vet. 1990;7:135–141. [Google Scholar]
  5. Firinu A, Scarano C. La peste porcine africaine et la peste porcine classique chez le sanglier en Sardeigne. Rev. Scie. Tech. Off. Int. Epizoot. 1988;7:901–908. doi: 10.20506/rst.7.4.389. [DOI] [PubMed] [Google Scholar]
  6. Flori J, Mousing J, Gardner I, Willeberg P, Have P. Risk factors associated with seropositivity to porcine respiratory coronavirus in Danish swine herds. Prev. Vet. Med. 1995;25:51–62. [Google Scholar]
  7. Hosmer D.W, Lemeshow S. Wiley; New York: 1989. Applied Logistic Regression; pp. 11–18. [Google Scholar]; Hosmer D.W, Lemeshow S. Wiley; New York: 1989. Applied Logistic Regression; pp. 68–71. [Google Scholar]; Hosmer D.W, Lemeshow S. Wiley; New York: 1989. Applied Logistic Regression; p. 91. [Google Scholar]
  8. Laddomada A. Eradicata la peste suina africana dalla Penisola Iberica. Il Progresso Veterinario. 1996;3:68–72. [Google Scholar]
  9. Laddomada A, Patta C, Pittau G, Ruiu A, Firinu A. Proceedings of the Workshop on African Swine Fever; Lisbon; 1991. pp. 203–210. [Google Scholar]
  10. Mebus C.A. African swine fever. Adv. Virus Res. 1988;35:251–269. doi: 10.1016/s0065-3527(08)60714-9. [DOI] [PubMed] [Google Scholar]
  11. Pastor M.J, Arias M, Escribano J.M. Comparison of two antigens for use in an enzyme linked immunosorbent assay to detect African swine fever antibody. Am. J. Vet. Res. 1990;51:1510–1543. [PubMed] [Google Scholar]
  12. Perez-Sanchez R, Astingarraga A, Oleaga-Perez A, Encinas-Grandes A. Relationship between the persistence of African swine fever and the distribution of Ornithodoros erraticus in the province of Salamanca. Spain. Vet. Rec. 1994;135:207–209. doi: 10.1136/vr.135.9.207. [DOI] [PubMed] [Google Scholar]
  13. Ruiu A, Cossu P, Patta C. Ricerca di zecche del genere Ornithodoros e di altri artropodi in allevamenti suini ed in cinghiali della Provincia di Nuoro. Atti della Societa' Italiana di Scienze Veterinarie. 1989;43:1378–1391. [Google Scholar]
  14. Sanchez-Vizcaino J.M. African swine fever. In: Leman A.D, Straw B.E, Mengeling W.L, D'Allaire S, Taylor D.J, editors. Diseases of Swine. 7th edn. Iowa State University Press; Ames: 1992. pp. 228–236. [Google Scholar]
  15. SAS Institute . 3rd edn. SAS Institute; Cary, USA: 1990. p. 1028. (SAS/STAT User's guide). version 6. [Google Scholar]
  16. Smith R.D, editor. Veterinary Clinical Epidemiology, A Problem Oriented Approach. CRC Press; Boca Raton, FL: 1995. pp. 172–175. [Google Scholar]
  17. Weigel R.M, Austin C.C, Siegel A.M, Biehl L.G, Taft A.C. Risk factors associated with the seroprevalence of pseudorabies virus in Illinois swine herds. Prev. Vet. Med. 1992;12:1–13. [Google Scholar]
  18. Wilkinson P.J. The persistence of African swine fever in Africa and the Mediterranean. Prev. Vet. Med. 1984;2:71–82. [Google Scholar]
  19. Wilkinson P.J. African swine fever virus. In: Pensaert M.B, editor. Virus infections of porcines. Elsevier; Amsterdam: 1989. pp. 17–35. [Google Scholar]
  20. Wilkinson P.J, Wardley R.C, Williams S.N. African swine fever (Malta/78) in pigs. J. Comp. Pathol. 1981;91:277–284. doi: 10.1016/0021-9975(81)90033-5. [DOI] [PubMed] [Google Scholar]
  21. Willeberg P, Gardner I.A, Mortensen S, Mousing J. Models of herd size effects in swine diseases. Proc. 7th International Symposium on Veterinary Epidemiology and Economics; Nairobi; 1994. pp. 189–191. [Google Scholar]
  22. Zar J.H, editor. Biostatistical Analysis. 2nd edn. 1984. p. 662. Englewood Cliff, USA. [Google Scholar]

Articles from Preventive Veterinary Medicine are provided here courtesy of Elsevier

RESOURCES