Abstract
The peplomer protein (S) and the transmembrane protein (M) of transmissible gastroenteritis virus (TGEV) of swine were identified by iodination and serologically on the surface of infected cells. Of a total of 4 monoclonal antibodies (mAb) directed against four antigenic sites of S protein (Correa et al., 1988), 3 specific for sites A, B and D attached to the plasma membrane of infected cells, as disclosed by indirect immunofluorescence and by complement-mediated cytolysis. Four of the mAbs assayed were specific for the viral protein M and two of them gave plasma membrane immunofluorescence and mediated cytolysis in the presence of complement. The viral nucleoprotein N could not be demonstrated on the surface of infected cells either by iodination or employing 3 mAbs against this protein. Finally, a time course infection experiment demonstrated that S and M proteins were expressed on the surface of infected cells at 4 h after infection, before infective virus was released from infected cells.
Keywords: Transmissible gastroenteritis virus, Plasma membrane protein, Epitope exposed
References
- Alcaraz C., Pasamontes B., Ruiz Gonzalvo F., Escribano J.M. African swine fever virus-induced proteins on the plasma membranes of infected cells. Virology. 1989;168:406–408. doi: 10.1016/0042-6822(89)90283-3. [DOI] [PubMed] [Google Scholar]
- Bohl E.H. Transmissible gastroenteritis. In: Dunne H.W., Leman A.D., editors. Diseases of Swine. Iowa State University Press; Ames: 1975. pp. 168–208. [Google Scholar]
- Cepica A., Derbyshire J.B. Antibody-dependent cell-mediated cytotoxicity and spontaneous cell-mediated cytotoxicity against cells infected with porcine transmissible gastroenteritis virus. Can. J. Comp. Med. 1983;47:298–303. [PMC free article] [PubMed] [Google Scholar]
- Correa I., Jiménez G., Suñe C., Bullido M.J., Enjuanes L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988;10:77–94. doi: 10.1016/0168-1702(88)90059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charley B., Laude H. Induction of alpha interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1. J. Virol. 1988;62:8–11. doi: 10.1128/jvi.62.1.8-11.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Escribano J.M., Tabarés E. Proteins specified by african swine fever virus: V-Identification of inmediate early, early and late proteins. Arch. Virol. 1987;92:221–232. doi: 10.1007/BF01317479. [DOI] [PubMed] [Google Scholar]
- Garwes D.J., Pocock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
- Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1979;3:179–190. [Google Scholar]
- Holmes K.V., Doller E.W., Behnke J.N. Analysis of the functions of coronavirus glycoproteins by differential inhibition of synthesis with tunicamycin. Adv. Exp. Med. Biol. 1981;142:133–142. doi: 10.1007/978-1-4757-0456-3_11. [DOI] [PubMed] [Google Scholar]
- Jiménez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapke P.A., Tung F.Y.T., Hogue B.G., Brian D.A., Woods R.D., Wesley R. The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology. 1988;165:367–376. doi: 10.1016/0042-6822(88)90581-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laude H., Chapsal J.M., Gelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
- Laude H., Rasschaert D., Huet J.C. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
- Laviada M.D., Marcotegui M.A., Escribano J.M. Diagnóstico e identificación de un brote de gastroenteritis transmisible porcina en España. Med. Vet. 1988;5:563–575. [Google Scholar]
- Sanchez C.M., Jiménez G., Laviada M.D., Correa I., Suñe C., Bullido M.J., Gebauer F., Smerdou C., Callebaut P., Escribano J.M., Enjuanes L. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1989;174:410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddell S., Wege H., Ter Menlen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
- Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch S.W., Saif L.J. Monoclonal antibodies to a virulent strain of transmissible gastroenteritus virus: comparison of reactivity with virulent and attenuated virus. Arch. Virol. 1988;101:221–235. doi: 10.1007/BF01311003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods R.D., Wesley R.D., Kapke P.A. Complement-dependent neutralization of transmissible gastroenteritis virus by monoclonal antibodies. Adv. Exp. Med. Biol. 1987;218:493–500. doi: 10.1007/978-1-4684-1280-2_64. [DOI] [PubMed] [Google Scholar]
- Zeller W., Bruns M., Lehmann-Grube F. Lymphocytic choriomeningitis virus. X. Demonstration of nucleoprotein on the surface of infected cells. Virology. 1988;162:90–97. doi: 10.1016/0042-6822(88)90397-2. [DOI] [PubMed] [Google Scholar]