Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;13(2):87–100. doi: 10.1016/0168-1702(89)90008-7

Nucleotide sequence of coronavirus TGEV genomic RNA: evidence for 3 mRNA species between the peplomer and matrix protein genes

Ronald D Wesley 1,, Andrew K Cheung 1, David D Michael 1, Roger D Woods 1
PMCID: PMC7134121  PMID: 2549745

Abstract

The region of the TGEV genome between the E1-matrix protein gene and the E2-peplomer protein gene has been sequenced from a cDNA clone. The consensus recognition sequence, 5 ′AATT CTAAAC was found upstream from 3 large open reading frames. In coronaviruses these homologous recognition sequences are involved in the initiation of transcription suggesting that there are 3 mRNA species in this region of the TGEV genome. Northern blot analysis and nuclease S1 mapping confirmed the presence of 3 mRNA species between mRNA 3 encoding the E2-peplomer protein and mRNA 6 encoding the E1-matrix protein. The 5′ regions of these 3 mRNAs encode potential polypeptides of predicted molecular weight; 7859, 27744 and 9287, respectively. The potential translation product of ORF B (27744 Da) is considerably larger than previously reported and could be difficult to distinguish by size from the E1-matrix protein.

Keywords: Coronavirus, TGEV, RNA sequencing

References

  1. Binns M.M., Boursnell M.E.G., Foulds I.J., Brown T.D.K. The use of a random priming procedure to generate cDNA libraries of infectious bronchitis virus, a large RNA virus. J. Virol. Methods. 1985;11:265–269. doi: 10.1016/0166-0934(85)90116-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  3. Brian D.A., Hogue B., Lapps W., Potts B., Kapke P. Proceedings, 4th International Symposium on Neonatal Diarrhea. Veterinary Infectious Disease Organization; Saskatoon: 1984. Comparative structure of coronaviruses; pp. 100–116. [Google Scholar]
  4. Britton P., Carmenes R.S., Page K.W., Garwes D.J., Parra F. Sequence of the nucleoprotein gene from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Mol. Microbiol. 1988;2:89–99. [PubMed] [Google Scholar]
  5. Brown T.D.K., Boursnell M.E.G., Binns M.M., Tomley F. Cloning and sequencing of 5′ terminal sequences from avian infectious bronchitis virus genomic RNA. J. Gen. Virol. 1984;67:221–228. doi: 10.1099/0022-1317-67-2-221. [DOI] [PubMed] [Google Scholar]
  6. Cavanagh D., Davis P.J. Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J. Gen. Virol. 1988;69:621–629. doi: 10.1099/0022-1317-69-3-621. [DOI] [PubMed] [Google Scholar]
  7. Cheung A.K. Fine mapping of the immediate-early gene of the Indiana-Funkhauser strain of pseudorabies virus. J. Virol. 1988;62:4763–4766. doi: 10.1128/jvi.62.12.4763-4766.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Church G.M., Gilbert W. Vol. 81. 1984. Genome sequencing; pp. 1991–1995. (Proc. Natl. Acad. Sci., USA). [Google Scholar]
  9. Garwes D.J., Pocock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
  10. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984;28:351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  11. Hu S., Bruszewski J., Boone T., Souza L. Cloning and expression of the surface glycoprotein gp 195 of porcine transmissible gastroenteritis virus. In: Chanock R.M., Lemer R.A., editors. Modern Approaches to Vaccines. Cold Spring Harbor Laboratory; New York: 1984. pp. 219–223. [Google Scholar]
  12. Huynh T.V., Young R.A., Davis R.W. Constructing and screening cDNA libraries in λgt10 and λgt11. In: Glover D., editor. A Practical Approach. Vol. I. IRL Press; Oxford: 1985. pp. 49–78. (DNA Cloning). [Google Scholar]
  13. Jacobs L., Van Der Zeijst B.A.M., Horzinek M.C. Characterization and translation of transmissible gastroenteritis mRNAs. J. Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  16. Lai M.M.C. Coronavirus leader-RNA-primed transcription an alternative mechanism to RNA splicing. Bioessays. 1986;5:257–260. doi: 10.1002/bies.950050606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lai M.M.C., Patton C.D., Baric R.S., Stohlman S.A. Presence of leader sequences in the mRNA of mouse hepatitis virus. J. Virol. 1983;46:1027–1033. doi: 10.1128/jvi.46.3.1027-1033.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laude H., Rasschaert D., Huet J.-C. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  19. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; New York: 1982. (Molecular Cloning; A Laboratory Manual). [Google Scholar]
  20. McClurkin A.W., Norman J.O. Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Can. J. Comp. Med. Vet. Sci. 1966;30:190–198. [PMC free article] [PubMed] [Google Scholar]
  21. Rasschaert D., Gelfi J., Laude H. Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression. Biochimie. 1987;69:591–600. doi: 10.1016/0300-9084(87)90178-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rasschaert D., Laude H. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
  23. Saif L.J., Bohl E.H. Transmissible gastroenteritis. In: Leman A.D., Straw B., Clock R.D., Mengeling W.L., Penny R.H.C., Scholl E., editors. Diseases of Swine. 6th edit. Iowa State Unit. Press; Ames, Iowa U.S.A: 1986. pp. 255–274. [Google Scholar]
  24. Skinner M.A., Ebner D., Siddell S.G. Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second downstream open reading frame. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
  25. Smith A.R., Boursnell M.E.G., Binns M.M., Brown T.D.K., Inglis S.C. Identification of a new gene product encoded by mRNA D of infectious bronchitis virus. In: Lai M.M.C., Stohlman S.A., editors. Coronaviruses. Vol. 218. Plenum Press; New York: 1987. pp. 47–54. (Adv. Exp. Med. Biol.). [DOI] [PubMed] [Google Scholar]
  26. Spaan W.J.M., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., Van der Zeijst B.A.M., Siddell S. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. Eur. Mol. Biol. Organ. J. 1983;2:1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanger F., Micklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wesley R.D., Woods R.D. Identification of a 17,000 molecular weight antigenic polypeptide in transmissible gastroenteritis virus-infected cells. J. Gen. Virol. 1986;67:1419–1425. doi: 10.1099/0022-1317-67-7-1419. [DOI] [PubMed] [Google Scholar]
  29. Wesley R.D., Woods R.D., Correa I., Enjuanes L. Lack of protection in vivo with neutralizing monoclonal antibodies to transmissible gastroenteritis virus. Vet. Microbiol. 1989;18:197–208. doi: 10.1016/0378-1135(88)90087-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES