Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;3(3):245–261. doi: 10.1016/0168-1702(85)90049-8

In vivo and in vitro models of demyelinating diseases

XII. Persistence and expression of corona JHM vims functions in RN2-2 Schwannoma cells during latency

Marion Coulter-Mackie 1,, Richard Adler 1,∗∗, Greame Wilson 1, Samuel Dales 1,
PMCID: PMC7134134  PMID: 3000100

Abstract

The coronavirus JHMV persistently infects rat Schwannoma cells RN2-2 at 32.5°C and enters a host-imposed reversible, latent state at 39.5°C. JHMV can remain up to 20 days in the latent state and about 14 days before the cultures lose the capacity to resume virus production upon return to 32.5°C.

Although persistently and latently infected RN2-2 cells display resistance to superinfection by a heterologous agent VSV, these cells do not release detectable soluble mediators (e.g., interferon) of the antiviral state. Nevertheless, RN2-2 cells are competent to synthesize and release interferon when treated with the appropriate inducers. These observations suggest that interferon does not play any role or may not be the major factor in the control of latency in the Schwannoma cell.

Hybridization with virus-specific cDNAs shows that all viral mRNAs are present during latency and that viral mRNAs are present in the polysomes of infected cells at 39.5°C. Western immunoblotting with hybridoma antibodies demonstrates that viral specific proteins are produced at the restrictive temperature. These results

References

  1. Beushausen S., Dales S. In vivo and in vitro models of demyelinating disease XI. Tropism and differentiation regulate the infectious process of coronaviruses in primary expiants of the rat CNS. Virology. 1985;141:89–101. doi: 10.1016/0042-6822(85)90185-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheley S., Anderson R. Cellular synthesis and modification of murine hepatitis virus polypeptides. J. Gen. Virol. 1981;54:301–311. doi: 10.1099/0022-1317-54-2-301. [DOI] [PubMed] [Google Scholar]
  3. Cheley S., Morris V.L., Cupples M.J., Anderson R. RNA and polypeptide homology among murine coronavirus. Virology. 1981;115:310–321. doi: 10.1016/0042-6822(81)90113-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coulter-Mackie M.B., Bradbury W.C., Dales S., Flintoff W.F., Morris V.L. In vivo and in vitro models of demyelinating diseases. II. Isolation of Halle measles virus-specific RNA from BGMK cells and preparation of complementary DNA. Virology. 1980;102:327–338. doi: 10.1016/0042-6822(80)90100-2. [DOI] [PubMed] [Google Scholar]
  5. Coulter-Mackie M.B., Flintoff W.F., Dales S. In vivo and in vitro models of demyelinating disease X. A Schwannoma-L-2 somatic cell hybrid persistently yielding high titres of mouse hepatitis virus strain JHM. Virus Res. 1984;1:477–487. doi: 10.1016/0168-1702(84)90005-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeMaeyer E., Enders J.F. Vol. 107. 1961. An interferon appearing in cell cultures infected with measles virus; pp. 573–578. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  7. Desmyter J., Melnick J.L., Rawls W.E. Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero) J. Virol. 1968;2:955–961. doi: 10.1128/jvi.2.10.955-961.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garlinghouse L.E., Smith A.R., Haiford T. The biological relationship of mouse hepatitis virus (MHV) strains and interferon: In vitro induction and sensitivities. Arch. Virol. 1984;82:19–29. doi: 10.1007/BF01309365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gielkins A.L.J., Berns T.J.M., Bloemendal H. An efficient procedure for the isolation of polyribosomes from tissue culture. Eur. J. Biochem. 1971;22:478–484. doi: 10.1111/j.1432-1033.1971.tb01566.x. [DOI] [PubMed] [Google Scholar]
  10. Hasony H.J., Macnaughton M.R. Prevalence of human coronavirus antibody in the population of southern Iraq. J. Med. Virol. 1982;9:209–216. doi: 10.1002/jmv.1890090308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henderson D.R., Joklik W.K. The mechanism of interferon induction of UV-irradiated reovirus. Virology. 1978;91:389–406. doi: 10.1016/0042-6822(78)90386-0. [DOI] [PubMed] [Google Scholar]
  12. Heron I., Berg K. The actions of interferon are potentiated at elevated temperature. Nature (London) 1978;274:508–510. doi: 10.1038/274508a0. [DOI] [PubMed] [Google Scholar]
  13. Hirano N., Goto N., Ogawa T., Ono K., Murakowi T., Fujiwara K. Hydrocephalus in suckling rats infected intracerebrally with mouse hepatitis virus, MHV-A59. Microbiol. Immunol. 1980;24:825–834. doi: 10.1111/j.1348-0421.1980.tb02887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holmes K.V., Behnke J.N. Evolution of a coronavirus during persistent infection in vitro. In: Biochemistry and Biology of Coronaviruses. In: Ter Meulen V., Siddel S., Wege H., editors. Vol. 142. Plenum Press; New York: 1981. pp. 287–299. (Adv. Exp. Med. Biol.). [DOI] [PubMed] [Google Scholar]
  15. Hovi T., Kainulainen H., Ziola B., Salmi A. OC43 strain-related coronavirus antibodies in different age groups. J. Med. Virol. 1979;3:313–320. doi: 10.1002/jmv.1890030410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knobler R.L., Haspel M.V., Oldstone M.B.A. Mouse hepatitis virus Type 4 (JHM strain)-induced fatal central nervous system disease. I. Genetic control and the murine neuron as the susceptible site of disease. J. Exp. Med. 1981;153:832–843. doi: 10.1084/jem.153.4.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lockart R.Z. Criteria for acceptance of a viral inhibitor as an interferon on a general description of the biological properties of known interferons. In: Finter N.B., editor. Interferons and Interferon Inducers. North-Holland Publ. Co; Amsterdam: 1973. pp. 11–27. [Google Scholar]
  19. Lucas A., Flintoff W., Anderson R., Percy D., Coulter M., Dales S. In vivo and in vitro models of demyelinating diseases. Tropism of the JHM strain of mouse hepatitis virus for cells of glial origin. Cell. 1977;12:553–560. doi: 10.1016/0092-8674(77)90131-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lucas A., Coulter M., Anderson R., Dales S., Flintoff W. In vivo and in vitro models of demyelinating diseases. II. Persistence and host regulated thermosensitivity in cells of neural derivation infected with mouse hepatitis and measles viruses. Virology. 1978;88:325–337. doi: 10.1016/0042-6822(78)90289-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Macnaughton M.R. Occurrence and frequency of coronavirus infections in humans as determined by enzymeinked immunosorbent assay. Infect. Immun. 1982;39:419–423. doi: 10.1128/iai.38.2.419-423.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McKimm-Breschkin J.L., Rapp F. Interferon induction by measles virus. Intervirology. 1981;16:250–259. doi: 10.1159/000149274. [DOI] [PubMed] [Google Scholar]
  23. McMaster S.K., Carmichael G.G. Vol. 74. 1977. Analysis of single and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange; pp. 4835–4838. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagashima K., Wege H., Meyermann R., Ter Meulen V. Demyelinating encephalomyelitis induced by longerm coronavirus infection in rats. A preliminary report. Acta Neuropathol. 1979;45:205–213. doi: 10.1007/BF00702672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schellekens H., DeWilde G.A., Weimar W. Production and initial characterization of rat interferon. J. Gen. Virol. 1980;46:243–247. doi: 10.1099/0022-1317-46-1-243. [DOI] [PubMed] [Google Scholar]
  26. Siddell S., Wege H., Ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  27. Sorensen O., Percy D., Dales S. In vivo and in vitro models of demyelinating disease III. JHM virus infection of rats. Arch. Neurol. 1980;37:478–484. doi: 10.1001/archneur.1980.00500570026003. [DOI] [PubMed] [Google Scholar]
  28. Sorensen O., Dugre R., Percy D., Dales S. In vivo and in vitro models of demyelinating disease: Endogenous factors influencing demyelinating disease caused by mouse hepatitis virus in rats and mice. Infect. Immun. 1982;37:1248–1260. doi: 10.1128/iai.37.3.1248-1260.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sorensen O., Coulter-Mackie M.B., Puchalski S., Dales S. In vivo and in vitro models of demyelinating disease. IX. Progression of JHM virus infection in the central nervous system of the rat during overt and asymptomatic phases. Virology. 1984;137:347–357. doi: 10.1016/0042-6822(84)90227-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stern D.F., Kennedy I.T. Coronavirus multiplication strategy. I. Identification and characterization of viruspecified RNA. J. Virol. 1980;34:665–674. doi: 10.1128/jvi.34.3.665-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stohlman S.A., Weiner L.P. Stability of neurotrophic mouse hepatitis virus (JHM strain) during chronic infection of neuroblastoma cells. Arch. Virol. 1978;57:53–61. doi: 10.1007/BF01315637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Strohman R.C., Moss P.S., Micou-Eastwood J., Spector D., Przybla A., Paterson B. Messenger RNA for myosin polypeptides: Isolation from single myogenic cell cultures. Cell. 1977;10:265–273. doi: 10.1016/0092-8674(77)90220-3. [DOI] [PubMed] [Google Scholar]
  33. Taguchi F., Siddell S.G., Wege H., ter Meulen V. Characterization of a variant virus selected in rat brains after infection by coronavirus mouse hepatitis virus JHM. J. Virol. 1985;54:429–435. doi: 10.1128/jvi.54.2.429-435.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications; pp. 4350–4355. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. White B.A., Bancroft F.C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple virus infection of cell cultures. Infect. Immun. 1982;6:988–995. [PubMed] [Google Scholar]
  36. Wiktor T.J., Clark H.F. Chronic rabies virus infection of cell cultures. Infect. Immun. 1972;6:988–995. doi: 10.1128/iai.6.6.988-995.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES