Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;1(2):153–167. doi: 10.1016/0168-1702(84)90070-4

Replication and morphogenesis of avian coronavirus in Vero cells and their inhibition by monensin

Firelli V Alonso-Caplen 1,, Yumiko Matsuoka 1, Graham E Wilcox 1,∗∗, Richard W Compans 1
PMCID: PMC7134135  PMID: 6099655

Abstract

Avian infectious bronchitis virus (IBV) was adapted to Vero cells by serial passage. No significant inhibition of IBV replication was observed when infected Vero cells were treated with α-amanitin or actinomycin D. In thin sections of infected cells, assembly of IBV was observed at the rough endoplasmic reticulum (RER), and mature IBV particles were located in dilated cisternae of the RER as well as in smooth cytoplasmic vesicles. In addition to typical IBV particles, enveloped particles containing numerous ribosomes were identified at later times postinfection. Monensin, a sodium ionophore which blocks glycoprotein transport to plasma membranes at the level of the Golgi complex, was found to inhibit the formation of infectious IBV. In thin sections of infected Vero cells treated with the ionophore, IBV particles were located in dilated cytoplasmic vesicles, but fewer particles were found when compared to controls. A similar pattern of virus-specific proteins was detected in control or monensin-treated IBV-infected cells, which included two glycoproteins (170000 and 24000 daltons) and a polypeptide of 52000 daltons. These results suggesl lhal the ionophore inhibits assembly of a virus which malures at intracellular membranes.

Keywords: avian coronavirus, IBV replicalion, IBV morphogenesis, monensin

References

  1. Alonso F.V., Compans R.W. Differential effects of monensin on enveloped viruses that form at distinct plasma membrane domains. J. Cell Biol. 1981;89:700–705. doi: 10.1083/jcb.89.3.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alonso-Caplen F.V., Compans R.W. Modulation of glycosylation and transport of viral membrane glycoproteins by a sodium ionophore. J. Cell Biol. 1983;97:659–668. doi: 10.1083/jcb.97.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker W.B., McIntosh K., Dees J.H., Chanock R.M. Morphogenesis of avian infectious bronchitis virus and a related human virus (strain 229E) J. Virol. 1967;1:1019–1027. doi: 10.1128/jvi.1.5.1019-1027.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonner W.M., Laskey R.A. A film detection method of tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 1974;46:83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  5. Brayton P.R., Ganges R.G., Stohlman S.A. Host cell nuclear function and murine hepatitis virus replication. J. Gen. Virol. 1981;56:457–460. doi: 10.1099/0022-1317-56-2-457. [DOI] [PubMed] [Google Scholar]
  6. Cavanagh D. Coronavirus IBV glycopolypeptides: size of their polypeptide moieties and nature of their oligosaccharides. J. Gen. Virol. 1983;64:1187–1192. doi: 10.1099/0022-1317-64-5-1187. [DOI] [PubMed] [Google Scholar]
  7. Choppin P.W. Replication of influenza virus in a continuous cell line: High yield of infective virus from cells inoculated at high multiplicity. Virology. 1969;38:130–134. doi: 10.1016/0042-6822(69)90354-7. [DOI] [PubMed] [Google Scholar]
  8. Coria M.F., Ritchie A.E. Serial passage of 3 strains of avian infectious bronchitis virus in African Green monkey kidney cells (Vero) Avian Dis. 1973;17:697–704. [PubMed] [Google Scholar]
  9. Cunningham C.H., Spring M.P., Nazerian K. Replication of avian infectious bronchitis virus in African Green monkey kidney cell line Vero. J. Gen. Virol. 1972;16:423–427. doi: 10.1099/0022-1317-16-3-423. [DOI] [PubMed] [Google Scholar]
  10. Davies H.A., Dourmashkin R.R., MacNaughton M.T. Rihonucleoprotein of avian infectious bronchitis virus. J. Gen. Virol. 1981;53:67–74. doi: 10.1099/0022-1317-53-1-67. [DOI] [PubMed] [Google Scholar]
  11. Evans M.R., Simpson R.W. The coronavirus avian infectious bronchitis virus requires the cell nucleus and host transcriptional factors. Virology. 1980;105:582–591. doi: 10.1016/0042-6822(80)90058-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holmes K.V., Choppin P.W. On the role of the response of the cell membrane in determining virus virulence. Contrasting effects of the parainfluenza SV5 in two cell types. J. Exp. Med. 1966;124:501–520. doi: 10.1084/jem.124.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson D.C., Schlesinger M.J. Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology. 1980;103:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
  15. Johnson D.C., Spear P.G. Monensin inhibits the processing of herpes simplex virus glycoproteins. their transport to the cell surface, and the egress of virions from infected cells. J. Virol. 1982;43:1102–1112. doi: 10.1128/jvi.43.3.1102-1112.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kennedy D.A., Johnson-Lussenberg C.M. Inhibition of coronavirus 229E replication by actinomycin D. J. Virol. 1979;29:401–404. doi: 10.1128/jvi.29.1.401-404.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U.L. Cleavage of structural proteins during the assembly of the head of hacteriophage T4. Nature (London) 1970;227:680–682. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Ledger P.W., Uchida N., Tanzer M.L. Immunocytochemical localization of procollagen and fibronectin in human fibroblasts: effects of the monovalent ionophore. monensin. J. Cell Biol. 1980;87:663–671. doi: 10.1083/jcb.87.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Madoff D.H., Lenard J. A membrane glycoprotein that accumulates intracellularly: cellular processing of the large glycoprotein of LaCrosse virus. Cell. 1982;28:821–829. doi: 10.1016/0092-8674(82)90061-7. [DOI] [PubMed] [Google Scholar]
  20. Mahy B.W.J., Hastie N.D., Armstrong S.J. Vol. 69. 1972. Inhibition of influenza virus replication by α-amanitin: mode of action; pp. 1421–1424. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mahy B.W.J., Siddell S., Wege H., ter Meulen V. RNA-dependent RNA polymerase activity in murine coronavirus-infected cells. J. Gen. Virol. 1983;64:103–111. doi: 10.1099/0022-1317-64-1-103. [DOI] [PubMed] [Google Scholar]
  22. Niemann H., Boschek B., Evans D., Rosing M., Tamura I., Klenk H.-D. Posttranslational glycosylation of coronavirus glycoprotein E1: inhibition by monensin. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robb J.A., Bond C.W. Coronaviridae. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol. 14. Plenum Press; New York: 1979. pp. 193–247. (Comprehensive Virology). [Google Scholar]
  24. Roeder R.G. Eukaryotic nuclear RNA polymerases. In: Losik R., Chamberlin N., editors. RNA Polymerase. Cold Spring Harbor Laboratory; Cold Spring Harbor. N.Y: 1976. pp. 285–329. [Google Scholar]
  25. Roth M.G., Compans R.W. Antibody-resistant spread of vesicular stomatitis virus infection in cell lines of epithelial origin. J. Virol. 1980;35:547–550. doi: 10.1128/jvi.35.2.547-550.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schochetman G., Stevens R.H., Simpson R.W. Presence of infectious polyadcnylated RNA in the coronavirus avian bronchitis virus. Virology. 1977;77:772–782. doi: 10.1016/0042-6822(77)90498-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Siddell S., Wege H., ter Meulen V. The structure and replication of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:131–163. doi: 10.1007/978-3-642-68528-6_4. [DOI] [PubMed] [Google Scholar]
  28. Siddell S., Wege H., ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  29. Srinivas R.V., Meisen L.R., Compans R.W. Effects of monensin on morphogenesis and infectivity of Friend murine leukemia virus. J. Virol. 1982;42:1067–1075. doi: 10.1128/jvi.42.3.1067-1075.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stern D.F., Kennedy S.I.T. Coronavirus multiplication strategy. I. Identification and characterization of virus-specified RNA. J. Virol. 1980;34:665–674. doi: 10.1128/jvi.34.3.665-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stern D.F., Sefton B.M. Coronavirus proteins: biogenesis of avian infectious bronchitis virus virion proteins. J. Virol. 1982;44:794–803. doi: 10.1128/jvi.44.3.794-803.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stern D.F., Sefton B.M. Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J. Virol. 1982;44:804–812. doi: 10.1128/jvi.44.3.804-812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sturman L.S. Characterization of a coronavirus I. Structural proteins: effects of preparative conditions on the migration of protein in polyacrylamide gels. Virology. 1977;77:637–649. doi: 10.1016/0042-6822(77)90488-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tajiri K., Uchida N., Tanzer M.L. Undersulfated proteoglycans are secreted by cultured chondrocytes in the presence of the ionophore monensin. J. Biol. Chem. 1980;365:6036–6039. [PubMed] [Google Scholar]
  35. Tartakoff A.M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983;32:1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  36. Tartakoff A.M., Vassalli P. Plasma cell immunoglobulin secretion: arrest is accompanied by alterations of the Golgi complex. J. Exp. Med. 1977;146:1332–1345. doi: 10.1084/jem.146.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tartakoff A.M., Vassalli P. Comparative studies of intracellular transport of secretory proteins. J. Cell Biol. 1978;79:694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tobita K., Sugiura A., Enomoto E., Furuyama M. Plaque assay and primary isolation of influenza A virus in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med. Microbiol. Immunol. 1975;162:9–14. doi: 10.1007/BF02123572. [DOI] [PubMed] [Google Scholar]
  39. Wilhelmsen K.C., Lebowitz J.L., Bond C.W., Robb J.A. The replication of murine coronaviruses in enucleated cells. Virology. 1981;110:225–230. doi: 10.1016/0042-6822(81)90027-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES