Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;24(4):261–273. doi: 10.1016/0166-3542(94)90074-4

Inhibition of human adenoviruses by 1-(2′-hydroxy-5′-methoxybenzylidene)amino-3-hydroxyguanidine tosylate

MBV Hui a, EJ Lien a, MD Trousdale b,
PMCID: PMC7134180  PMID: 7993072

Abstract

Antiviral activities of four Schiff bases of aminohydroxyguanidine, designated ML1, ML4, ATL14 and LK11, were tested against human adenovirus types 5 and 8 (Ad5 and Ad8) in A549 cells by plaque reduction and virus yield reduction methods. Compound ML1 1-(2′-hydroxy-5′-methoxybenzylidene)amino-3-hydroxyguanidine tosylate gave the best therapeutic indices (TC50/IC50) of 27.2 and 17.8 for Ad5 and Ad8, respectively. Pretreatment of cells with ML1 did not affect the adsorption nor the penetration of virus. Ultrastructure studies showed that only the drug treated infected cells had unidentified irregular shaped electron dense structures that might be drug altered viral macromolecules that were not assembled into complete infectious virus particles. Since these compounds have metal chelating properties, their antiviral activity may involve the early IA (EIA) gene which encodes a viral protein of 289 amino acid which has a zinc finger moiety that is required for its transactivation activity.

Keywords: Adenovirus, Antiviral, Schiff bases of aminohydroxyguanidine

References

  1. Baba M., Mori S., Shigeta S., DeClercq E. Selective inhibitory effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 2′-nor-cydic GMP on adenovirus replication in vitro. Antimicrob. Agents Chemo. 1987;31:337–339. doi: 10.1128/aac.31.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chiba S., Nakata S., Najamura I., Taniguchi K., Urasawa S., Fujinaga K., Nakao T. Outbreak of infantile gastroenteritis due to type 40 adenovirus. Lancet. 1983;1983:954–957. doi: 10.1016/s0140-6736(83)90463-4. [DOI] [PubMed] [Google Scholar]
  3. Cory J.G., Carter G.L., Bacon P.E., T'ang A., Lien E.J. Inhibition of ribonucleotide reductase and L1210 cell growth by N-hydroxy-N′-aminoguanidine derivatives. Biochem. Pharmacol. 1985;34:2645–2650. doi: 10.1016/0006-2952(85)90561-1. [DOI] [PubMed] [Google Scholar]
  4. Culp J.S., Webster L.C., Friedman D.J., Smith C.L., Huang W.J., Wu F.Y., Rosenberg M., Ricciardi R.P. Vol. 85. 1988. The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for transactivation; pp. 6450–6454. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Field H.J. Vol. 1. CRC Press, Inc; Boca Raton, Florida: 1988. p. 33. (Antiviral Agents: The development and assessment of antiviral chemotherapy). [Google Scholar]
  6. Ford E., Nelson K.E., Warren D. Epidemiology of epidemic keratoconjunctivitis. Epidem. Rev. 1987;9:244–261. doi: 10.1093/oxfordjournals.epirev.a036304. [DOI] [PubMed] [Google Scholar]
  7. Gordon Y.J., Romanowski E., Araullo-Cruz T., Seaberg L., Erzurum S., Tolman R., De Clercq E. Inhibitory effect of (S)-HPMPC, (S)-HPMPA, and 2′-nor-cyclic GMP on clinical ocular adenoviral isolates is serotype-dependent in vitro. Antiviral Res. 1991;16:11–16. doi: 10.1016/0166-3542(91)90054-u. [DOI] [PubMed] [Google Scholar]
  8. Gordon Y.J., Romanowski E., Araullo-Cruz T., De Clercq E. Pretreatment with topical 0.1% (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine inhibits adenovirus type 5 replication in the New Zealand rabbit ocular model. Cornea. 1992;11(6):529–533. doi: 10.1097/00003226-199211000-00008. [DOI] [PubMed] [Google Scholar]
  9. Hui M.B.V., Lien E.J., Trousdale M.D. Development of new Schiff bases of aminohydroxyguanidine for activities against human adenoviruses. J. Pharm. Sci. 1994 in press. [Google Scholar]
  10. Koneru P.B. PhD dissertation. Pharmaceutical Sciences, University of Southern California; 1991. Improvement of antileukemic activity of hydroxyaminoguanidine derivatives against CCRF-CEM/O cells by molecular modification and through combination with cytarabine. [Google Scholar]
  11. Lien E.J. Ribonucleotide reductase inhibitors as anti-cancer and antiviral agents. Prog. Drug Res. 1987;31:101–126. doi: 10.1007/978-3-0348-9289-6_2. [DOI] [PubMed] [Google Scholar]
  12. Lien E.J. SAR: Side effects and drug design. Marcel Dekker; New York: 1987. Ribonucleotide reductase inhibitors as antiviral agents and anticancer; pp. 163–182. [Google Scholar]
  13. Lien E.J., Wang P.H., Koneru P., Trousdale M.D., Yarber F. QSAR of the antiviral and cytotoxic effects of N-OH derivatives, and preliminary data on HSV-1 in comparison with Ara-C and acyclovir. Acta Pharm. Jugol. 1989;39:87–96. [Google Scholar]
  14. Lien E.J., Gao H., Wang F. Stepping-down approach and steeping-up approach in new drug design. Med. Chem. Res. 1991;1:173–184. [Google Scholar]
  15. Shields A.F., Hackman R.C., Fyfe K.H., Corey L., Meyers J.D. Adenovirus infections in patients undergoing bone-marrow transplantation. N. Engl. J. Med. 1985;312:529–533. doi: 10.1056/NEJM198502283120901. [DOI] [PubMed] [Google Scholar]
  16. Stalder H.J., Hierholzer J.C., Oxman M.N. New human adenovirus (candidate adenovirus type 35) causing fatal disseminated infection in a renal transplant recipient. J. Clin. Microbiol. 1977;6:257–265. doi: 10.1128/jcm.6.3.257-265.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tai A.W., Lien E.J., Lai M.M.C., Khwaja T.A. Novel N-hydroxyguanidine derivatives as anti-cancer and antiviral agents. J. Med. Chem. 1984;27:236–238. doi: 10.1021/jm00368a024. [DOI] [PubMed] [Google Scholar]
  18. T'ang A., Lien E.J., Lai M.M.C. Optimization of the Schiff bases of N-hydroxy-N′-aminoguanidine as anti-cancer and antiviral agents. J. Med. Chem. 1985;28:1103–1106. doi: 10.1021/jm00146a022. [DOI] [PubMed] [Google Scholar]
  19. Tsai J.C., Garlinghouse G., McDonnell P.J., Trousdale M.D. An experimental animal model of adenovirus induced ocular disease: The cotton rat. Arch. Ophthalmol. 1992;110:1167–1170. doi: 10.1001/archopht.1992.01080200147043. [DOI] [PubMed] [Google Scholar]
  20. Uhnoo I., Wadell G., Svensson L., Johansson M.E. Importance of enteric adenoviruses 40 and 41 in acute gastroenteritis in infants and young children. J. Clin. Microbiol. 1984;20:365–372. doi: 10.1128/jcm.20.3.365-372.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang P.H., Keck J.G., Lien E.J., Lai M.M.C. Design, synthesis, testing and quantitative structure-activity relationship analysis of substituted salicylaldehyde Schiff bases of 1-amino-3-hydroxyguanidine tosylate as new antiviral agents against coronavirus. J. Med. Chem. 1990;33:608–614. doi: 10.1021/jm00164a023. [DOI] [PubMed] [Google Scholar]
  22. Yolken R.H., Lawrence F., Leister F., Takiff H.E., Strauss S.E. Gastroenteritis associated with enteric type adenovirus in hospitalized infants. J. Pediatr. 1982;101:21–26. doi: 10.1016/s0022-3476(82)80173-x. [DOI] [PubMed] [Google Scholar]
  23. Zahradnik J.M., Spencer M.J., Porter D.D. Adenovirus infection in immunocompromised patients. Am. J. Med. 1980;68:725–732. doi: 10.1016/0002-9343(80)90262-4. [DOI] [PubMed] [Google Scholar]

Articles from Antiviral Research are provided here courtesy of Elsevier

RESOURCES