Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;5(2):253–263. doi: 10.1016/0168-1702(86)90022-5

The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains

HGM Niesters 1, JA Lenstra 1, WJM Spaan 1, AJ Zijderveld 1, NMC Bleumink-Pluym 1, F Hong 4, GJM van Scharrenburg 3, MC Horzinek 1, BAM van der Zeijst 2
PMCID: PMC7134181  PMID: 2429473

Abstract

The amino acid sequence of the gene for the peplomer protein of the vaccine strain M41 and the Beaudette laboratory strain M42-Salk of avian infectious bronchitis virus (IBV) have been derived from cDNA sequences. As found with other coronaviruses, the peplomer protein carries the epitopes eliciting neutralizing antibodies. The gene encodes a primary translation product of 1162 amino acids with a molecular weight of 128079. The use of a recent algorithm to predict membrane-protein interactions led to the unambiguous localization of the signah peptide and a transmembrane anchor α-helix at the C-terminus. At 50 positions amino acid differences were found between M41 and two Beaudette strains (M42-Salk and M42-Houghton). They are partly clustered in two regions of the protein. These two regions are candidates for neutralization epitopes of the protein.

Keywords: coronavirus IBV, peplomer protein, strain M41, M42

References

  1. Belt K.T., Carroll M.C., Porter R.R. The structural basis of the multiple forms of human complement component C4. Cell. 1984;36:907–914. doi: 10.1016/0092-8674(84)90040-0. [DOI] [PubMed] [Google Scholar]
  2. Binns M.M., Boursnell M.E.G., Cavanagh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  3. Brown T.D.K., Boursnell M.E.G. Avian infectious bronchitis virus genomic RNA contains sequence homologies at the intergenic boundaries. Virus Res. 1984;1:15–24. [Google Scholar]
  4. Brown T.D.K., Boursnell M.E.G., Binns M.M. A leader sequence is present on mRNA A of avian infectious bronchitis virus. J. Gen. Virol. 1984;65:1437–1442. doi: 10.1099/0022-1317-65-8-1437. [DOI] [PubMed] [Google Scholar]
  5. Boursnell M.E.G., Brown T.D.K., Binns M.M. Sequence of the membrane protein gene for avian coronavirus IBV. Virus Res. 1984;1:303–313. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cavanagh D. Structural polypeptides of coronavirus IBV. J. Gen. Virol. 1981;53:93–103. doi: 10.1099/0022-1317-53-1-93. [DOI] [PubMed] [Google Scholar]
  7. Cavanagh D. Coronavirus IBV glycopolypeptides: size of their polypeptide moieties and nature of their oligosaccharides. J. Gen. Virol. 1983;64:1187–1191. doi: 10.1099/0022-1317-64-5-1187. [DOI] [PubMed] [Google Scholar]
  8. Cavanagh D. Coronavirus IBV: structural characterization of the spike protein. J. Gen. Virol. 1983;64:2577–2583. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
  9. Cavanagh D., Davis P.J., Pappin D.J.C., Binns M.M., Boursnell M.E.G., Brown T.D.K. Coronavirus IBV; partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res. 1986;4:133–143. doi: 10.1016/0168-1702(86)90037-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chomiak T.W., Luginbuhl R.E., Steele P.M. Serological differences between the Beaudette and Massachusetts strains of infectious bronchitis virus. Avian Dis. 1963;7:325–331. [PubMed] [Google Scholar]
  11. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984;179:125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  12. Geysen H.M., Meloen R.H., Barteling S.J. Vol. 81. 1984. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid; pp. 3998–4002. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gubler U., Hoffman B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  14. Maniatis T., Fritsch E.F., Sambrook J., editors. Cold Spring Harbor Laboratory; 1982. (Molecular Cloning. A Laboratory Manual). [Google Scholar]
  15. Mockett A.P.A., Cavanagh D., Brown T.D.K. Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis Coronavirus strain Massachusetts M41. J. Gen. Virol. 1984;65:2281–2286. doi: 10.1099/0022-1317-65-12-2281. [DOI] [PubMed] [Google Scholar]
  16. Neuberger A., Gottschalk A., Marshall R.O., Spiro R.G. Carbohydrate-peptide linkages in glycoproteins and methods for their elucidation. In: Gottschalk A., editor. The Glycoproteins: Their Composition, Structure and Function. Elsevier; Amsterdam: 1972. pp. 450–490. [Google Scholar]
  17. Nunberg J.H., Rodgers G., Gilbert J.H., Snead R.M. Vol. 81. 1984. Method to map antigenic determinants recognized by monoclonal antibodies: localization of a determinant of virus neutralization on the feline leukemia virus envelope protein gp70; pp. 3675–3679. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Porter A.G., Barber C., Carey N.H., Hallewell R.A., Threlfall G., Emtage J.S. Complete nucleotide sequence of an influenza virus haemagglutinin gene from cloned DNA. Nature (London) 1979;282:471–477. doi: 10.1038/282471a0. [DOI] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Seliger H., Klein S., Narang Ch.K., Seemann-Pnesing B., Eiband J., Hanel N. Solid phase synthesis of oligonucleotides using the phosphite method. In: Ebel H.F., editor. Chemical and Enzymatic Synthesis of Gene Fragments. Verlag Chemie; Weinheim: 1982. pp. 81–91. [Google Scholar]
  21. Staden R. Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res. 1982;10:4731–4751. doi: 10.1093/nar/10.15.4731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stanley K.K., Luzio J.P. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 1984;5:1429–1434. doi: 10.1002/j.1460-2075.1984.tb01988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stern D.F., Kennedy S.I.T. Coronavirus multiplication strategy.I. Identification and characterization of virus-specified RNA. J. Virol. 1980;34:665–674. doi: 10.1128/jvi.34.3.665-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stern D.F., Kennedy S.I.T. Coronavirus multiplication strategy. II. Mapping the avian infectious bronchitis virus intracellular RNA species to the genome. J. Virol. 1980;36:440–449. doi: 10.1128/jvi.36.2.440-449.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stern D.F., Sefton B.M. Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis glycoproteins. J. Virol. 1982;44:804–812. doi: 10.1128/jvi.44.3.804-812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stern D.F., Sefton B.M. Coronavirus multiplication: locations of genes for virion proteins on the avian infectious bronchitis virus genome. J. Virol. 1984;50:22–29. doi: 10.1128/jvi.50.1.22-29.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stern D.F., Burgess L., Sefton B.M. Structural analysis of virion proteins of the avian Coronavirus infectious bronchitis virus. J. Virol. 1982;42:208–219. doi: 10.1128/jvi.42.1.208-219.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strauss E.G., Strauss J.H. Replication strategies of the single stranded RNA viruses of eukaryotes. Curr. Top. Microbiol. Immunol. 1983;105:1–99. doi: 10.1007/978-3-642-69159-1_1. [DOI] [PubMed] [Google Scholar]
  29. Von Heijne G. How signal sequences maintain cleavage specificity. J. Mol. Biol. 1984;173:243–251. doi: 10.1016/0022-2836(84)90192-x. [DOI] [PubMed] [Google Scholar]
  30. Vanish-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene. 1985;33:103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES