Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Aug 25;45(2):111–121. doi: 10.1016/S0168-1702(96)01369-X

Inhibition of cell adhesion to the virus by synthetic peptides of fiber knob of human adenovirus serotypes 2 and 3 and virus neutralisation by anti-peptide antibodies

Herbert Liebermann a,, Renate Mentel a, Leopold Döhner b, Susanne Modrow c, Werner Seidel a
PMCID: PMC7134187  PMID: 8896246

Abstract

The fiber knob of adenovirus (Ad) causes the first step in the interaction of adenovirus with cell membrane receptors. To obtain information on the receptor binding site(s) several synthetic peptides derived from Ad2 and Ad3 fiber head sequences and their antisera were tested for interference with virus attachment to HeLa and FL cells and cell adhesion to viruses. The anti-peptide sera were also evaluated in ELISA and virus neutralisation test. Ad2 (of subgroup C) and Ad3 (of subgroup B) attachment was not significantly inhibited by peptides corresponding to the amino acid residues 535–554, 555–573, 562–582 of Ad2 fiber or 210–225, 267–283, 291–306 and 300–319 of Ad3 fiber. However, microplate pre-adsorbed Ad3 fiber residues 210–225 and 267–283 could bind FL and HeLa cells, and 1 mg/ml of Ad3 fiber residues 267–283 inhibited the cell adhesion to Ad3 virus to approximately 90%. This peptide may participate in the receptor binding site of Ad3 fiber. ELISA reactive anti-peptide antibodies against the homologous peptide and virus did not significantly reduce the cell adhesion to the immobilised virus or the virus attachment to cells, but in the neutralisation assay antibodies raised to Ad2 fiber residues 555–573 and 562–582 and Ad3 fiber residues 210–225 caused neutralisation of the homologous virus at serum dilutions of 1:500 and 1:32, respectively. The corresponding peptides and one further peptide of Ad2 fiber and two of Ad3 fiber seem to contain neutralisation epitopes.

Keywords: Adenovirus, Fiber knob peptides, Cell receptor binding site, Cell adhesion, Virus attachment, Virus neutralisation

References

  1. Albiges-Rizo C., Barge A., Ruigrok R.W., Timmins P.A., Chroboczek J. Human adenovirus serotype 3 fibre protein. Comparison of native and recombinant proteins. J. Biol. Chem. 1991;266:3961–3967. [PubMed] [Google Scholar]
  2. Bai M., Harfe B., Freimuth P. Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virusreproduction in flat cells. J. Virol. 1993;67:5198–5205. doi: 10.1128/jvi.67.9.5198-5205.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnett P.V., Rowlands D.J., Parry N.R. Characterization of monoclonal antibodies raised against a synthetic peptide capable of inducing a neutralizing response to human rhinovirus type 2. J. Gen. Virol. 1993;74:1295–1302. doi: 10.1099/0022-1317-74-7-1295. [DOI] [PubMed] [Google Scholar]
  4. Caillet-Boudin M.L., Novelli A., Gesquiere J.C., Lemay P. Structural study of adenovirus type 2 fibre using anti-fibre and anti-peptide sera. Ann. Inst. Pasteur Virol. 1988;139:141–156. doi: 10.1016/s0769-2617(88)80013-3. [DOI] [PubMed] [Google Scholar]
  5. Caillet-Boudin M.L., Strecker G., Michalski J.C. O-linked GlcNAc in serotype 2 adenovirus fiber. Eur. J. Biochem. 1989;184:205–211. doi: 10.1111/j.1432-1033.1989.tb15008.x. [DOI] [PubMed] [Google Scholar]
  6. Chroboczeck J., Jacrot B. The sequence of adenovirus fibre: similarities and differences between serotypes 2 and 5. Virology. 1987;161:549–554. doi: 10.1016/0042-6822(87)90150-4. [DOI] [PubMed] [Google Scholar]
  7. Daniel C., Lacroix M., Talbot P.J. Mapping of linear antigenic sites on the S glycoprotein of a neurotropic murine coronavirus with synthetic peptides: a combination of nine prediction algorithms fails to identify relevant epitopes and peptide immunogenicity is drastically influenced by the nature of the protein carrier. Virology. 1994;202:540–549. doi: 10.1006/viro.1994.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Defer C., Belin M.-T., Caillet-Boudin M.-L., Boulanger P. Human adenovirus-host cell interactions: comparative studies with members of subgroups B and C. J. Virol. 1990;64:3661–3673. doi: 10.1128/jvi.64.8.3661-3673.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dernick R., Heukeshoven J. Proteine und Peptide. In: Mayr A., Bachmann P.A., Mayr-Bibrack B., Wittmann G., editors. Vol. III. Fischer; Jena: 1989. pp. 261–347. (Virologische Arbeitsmethoden). [Google Scholar]
  10. Devaux C., Caillet-Boudin M.-L., Jacrot B., Boulanger P. Crystallisation, enzymatic cleavage and the polarity of the adenovirus type 2 fiber. Virology. 1987;161:121–128. doi: 10.1016/0042-6822(87)90177-2. [DOI] [PubMed] [Google Scholar]
  11. Di Guilmi A.M., Barge A., Kitts P., Gout E., Chroboczek J. Human adenovirus serotype 3 (Ad3) and the Ad3 fiber protein bind to a 130-kDa membrane protein on HeLa cells. Virus Res. 1995;38:71–81. doi: 10.1016/0168-1702(95)00043-p. [DOI] [PubMed] [Google Scholar]
  12. Dimmock N.J. Update on the neutralisation of animal viruses. Rev. Med. Virol. 1995;5:165–179. (1995) [Google Scholar]
  13. Fender P., Kidd A.H., Brebant R., Öberg M., Drouet E., Chroboczek J. Antigenic sites on the receptor-binding domain of human adenovirus type 2 fiber. Virology. 1995;214:110–117. doi: 10.1006/viro.1995.9949. [DOI] [PubMed] [Google Scholar]
  14. Fox G., Parry N., Barnett P.K., McGinn B., Rowlands D.J., Brown F. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD. J. Gen. Virol. 1989;70:1–12. doi: 10.1099/0022-1317-70-3-625. [DOI] [PubMed] [Google Scholar]
  15. Haist S., März J., Wolf H., Modrow S. Reactivities of HIV-1 gag-derived peptides with antibodies of HIV-1 infected and uninfected humans. AIDS Res. Hum. Retrovirus. 1992;8:1909–1917. doi: 10.1089/aid.1992.8.1909. [DOI] [PubMed] [Google Scholar]
  16. Henry L.J., Xia D., Wilke M.E., Deisenhofer J., Gerard R.D. Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J. Virol. 1994;68:5239–5246. doi: 10.1128/jvi.68.8.5239-5246.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herisse J., Galibert F. Nucleotide sequence of the EcoRI fragment of the adenovirus 2 genome. Nucleic Acids Res. 1981;9:1229–1240. doi: 10.1093/nar/9.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ishibashi M., Maizel J.V. The polypeptides of adenovirus. VI. The early and late glycopeptides. Virology. 1974;58:345–361. doi: 10.1016/0042-6822(74)90070-1. [DOI] [PubMed] [Google Scholar]
  19. Liebermann H. Fischer; Jena: 1982. Reinigung und Konzentrierung Animaler Viren; p. 141. [Google Scholar]
  20. Liebermann H., Reimann I., Bartels T., Nöckler A., Thalmann G., Furkert J., Dölling R. Chemically synthesized peptides against foot-and-mouth disease—immune response against free and carrier-conjugated peptides of VP1 of O1-Kaufbeuren. Arch. Exp. Vet. Med. 1990;44:189–197. (in German) [PubMed] [Google Scholar]
  21. Liebermann H., Dölling R., Schmidt D., Thalmann D. RGD-containing peptides of VP1 of foot-and-mouth disease virus (FMDV) prevent virus infection in vitro. Acta Virol. 1991;35:90–93. [PubMed] [Google Scholar]
  22. Liebermann H., Mentel R. Quantification of adenovirus particles. J. Virol. Methods. 1994;50:281–292. doi: 10.1016/0166-0934(94)90184-8. [DOI] [PubMed] [Google Scholar]
  23. Louis N., Fender P., Barge A., Kitts P., Chroboczek J. Cell-binding domain of adenovirus serotype 2 fiber. J. Virol. 1994;68:4104–4106. doi: 10.1128/jvi.68.6.4104-4106.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mathias P., Wickham T., Moore M., Nemerow G. Multiple adenovirus serotypes use αv for infection. J. Virol. 1994;68:6811–6814. doi: 10.1128/jvi.68.10.6811-6814.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mentel R., Matthes E., Janta-Lipinski M., Wegner U. Fluorescent focus reduction assay for the screening of anti-adenoviral agents. J. Virol. Methods. 1996;59:99–104. doi: 10.1016/0166-0934(96)02026-5. [DOI] [PubMed] [Google Scholar]
  26. Modrow S., Wolf H. Use of synthetic peptides as diagnostic reagents in virology. In: van Regenmortel M.H.V., Neurath A.R., editors. Immunochemistry of Viruses II. The bases for serodiagnosis and vaccines. Elsevier; Amsterdam: 1990. pp. 83–101. [Google Scholar]
  27. Morein B., Fossum C., Lövgren K., Höglund S. The iscom—a modern approach to vaccines. Semin. Virol. 1990;1:49–55. [Google Scholar]
  28. Persson R., Wohlfart C., Svensson U., Everitt E. Virus receptor interaction in the adenovirus system. Characterization of the positive cooperative binding of virions on HeLa cells. J. Virol. 1985;54:92–97. doi: 10.1128/jvi.54.1.92-97.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pfaff E., Mussgay M., Böhm H.O., Schulz G.E., Schaller H. Antibodies against a preselected peptide recognise and neutralize foot-and-mouth disease virus. EMBO J. 1982;1:869–874. doi: 10.1002/j.1460-2075.1982.tb01262.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ruigrok R.W.H., Barge A., Albiges-Rizo C., Dayan S. Structure of adenovirus fibre. II. Morphology of single fibres. J. Mol. Biol. 1990;215:589–596. doi: 10.1016/S0022-2836(05)80170-6. [DOI] [PubMed] [Google Scholar]
  31. Signäs C., Akusjärvi G., Pettersson U. Adenovirus 3 fiber polypeptide gene: implications for the structure of the fiber protein. J. Virol. 1985;53:672–678. doi: 10.1128/jvi.53.2.672-678.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Surovoy A.Y., Ivanov V.T., Chepurkin A.V., Ivanyuschchenkov V.N., Dryagalin N.N. Is the arg-gly-asp sequence involved in binding of foot-and-mouth disease virus with cell receptor. Bioorg. Khim. 1988;14:965–968. (in Russian) [PubMed] [Google Scholar]
  33. Van Oostrum J., Burnett R.M. Molecular composition of the adenovirus type 2 virion. J. Virol. 1985;56:439–448. doi: 10.1128/jvi.56.2.439-448.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wadell G., Norby E. Immunological and other biological characteristics of penton of human adenoviruses. J. Virol. 1969;4:671–680. doi: 10.1128/jvi.4.5.671-680.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weber J.M., Talbot B.G., Delorme L. The orientation of the adenovirus fiber and its anchor domain. Identified through molecular mimicry. Virology. 1989;168:180–182. doi: 10.1016/0042-6822(89)90419-4. [DOI] [PubMed] [Google Scholar]
  36. Wickham T.J., Filardo E.J., Cheresh D.A., Nemerow G.R. Integrin alpha V beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J. Cell. Biol. 1994;127:257–264. doi: 10.1083/jcb.127.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wohlfart C.E.G., Svensson U.K., Everitt E. Interaction between HeLa cells and adenovirus type 2 virions neutralized by different antisera. J. Virol. 1985;56:896–903. doi: 10.1128/jvi.56.3.896-903.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wolf H., Modrow S., Motz M., Jameson B.A., Hermann G., Förtsch B. An integrated family of amino acid sequence anlysis program. LABIOS. 1988;4:187–191. doi: 10.1093/bioinformatics/4.1.187. [DOI] [PubMed] [Google Scholar]
  39. Xia D., Henry L.J., Gerard R.D., Deisenhofer J. Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure. 1994;2:1259–1270. doi: 10.1016/s0969-2126(94)00126-x. [DOI] [PubMed] [Google Scholar]
  40. Xia D., Henry L.J., Gerard R.D., Deisenhofer J. Structure of the receptor binding domain of adenovirus type 5 fiber protein. In: Doerfler W., Boehm P., editors. The Molecular Repertoire of Adenoviruses I. Springer; Berlin: 1995. pp. 39–46. [Google Scholar]
  41. Louis N., Fender P., Barge A., Kitts P., Chroboczek J. Cell-binding domain of adenovirus serotype 2 fiber. J. Virol. 1994;68:4104–4106. doi: 10.1128/jvi.68.6.4104-4106.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mathias P., Wickham T., Moore M., Nemerow G. Multiple adenovirus serotypes use αv for infection. J. Virol. 1994;68:6811–6814. doi: 10.1128/jvi.68.10.6811-6814.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mentel R., Matthes E., Janta-Lipinski M., Wegner U. Fluorescent focus reduction assay for the screening of anti-adenoviral agents. J. Virol. Methods. 1996;59:99–104. doi: 10.1016/0166-0934(96)02026-5. [DOI] [PubMed] [Google Scholar]
  44. Modrow S., Wolf H. Use of synthetic peptides as diagnostic reagents in virology. In: van Regenmortel M.H.V., Neurath A.R., editors. Immunochemistry of Viruses II. The bases for serodiagnosis and vaccines. Elsevier; Amsterdam: 1990. pp. 83–101. [Google Scholar]
  45. Morein B., Fossum C., Lövgren K., Höglund S. The iscom—a modern approach to vaccines. Semin. Virol. 1990;1:49–55. [Google Scholar]
  46. Persson R., Wohlfart C., Svensson U., Everitt E. Virus receptor interaction in the adenovirus system. Characterization of the positive cooperative binding of virions on HeLa cells. J. Virol. 1985;54:92–97. doi: 10.1128/jvi.54.1.92-97.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pfaff E., Mussgay M., Böhm H.O., Schulz G.E., Schaller H. Antibodies against a preselected peptide recognise and neutralize foot-and-mouth disease virus. EMBO J. 1982;1:869–874. doi: 10.1002/j.1460-2075.1982.tb01262.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ruigrok R.W.H., Barge A., Albiges-Rizo C., Dayan S. Structure of adenovirus fibre. II. Morphology of single fibres. J. Mol. Biol. 1990;215:589–596. doi: 10.1016/S0022-2836(05)80170-6. [DOI] [PubMed] [Google Scholar]
  49. Signäs C., Akusjärvi G., Pettersson U. Adenovirus 3 fiber polypeptide gene: implications for the structure of the fiber protein. J. Virol. 1985;53:672–678. doi: 10.1128/jvi.53.2.672-678.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Surovoy A.Y., Ivanov V.T., Chepurkin A.V., Ivanyuschchenkov V.N., Dryagalin N.N. Is the arg-gly-asp sequence involved in binding of foot-and-mouth disease virus with cell receptor. Bioorg. Khim. 1988;14:965–968. (in Russian) [PubMed] [Google Scholar]
  51. Van Oostrum J., Burnett R.M. Molecular composition of the adenovirus type 2 virion. J. Virol. 1985;56:439–448. doi: 10.1128/jvi.56.2.439-448.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wadell G., Norby E. Immunological and other biological characteristics of penton of human adenoviruses. J. Virol. 1969;4:671–680. doi: 10.1128/jvi.4.5.671-680.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Weber J.M., Talbot B.G., Delorme L. The orientation of the adenovirus fiber and its anchor domain. Identified through molecular mimicry. Virology. 1989;168:180–182. doi: 10.1016/0042-6822(89)90419-4. [DOI] [PubMed] [Google Scholar]
  54. Wickham T.J., Filardo E.J., Cheresh D.A., Nemerow G.R. Integrin alpha V beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J. Cell. Biol. 1994;127:257–264. doi: 10.1083/jcb.127.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wohlfart C.E.G., Svensson U.K., Everitt E. Interaction between HeLa cells and adenovirus type 2 virions neutralized by different antisera. J. Virol. 1985;56:896–903. doi: 10.1128/jvi.56.3.896-903.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wolf H., Modrow S., Motz M., Jameson B.A., Hermann G., Förtsch B. An integrated family of amino acid sequence anlysis program. LABIOS. 1988;4:187–191. doi: 10.1093/bioinformatics/4.1.187. [DOI] [PubMed] [Google Scholar]
  57. Xia D., Henry L.J., Gerard R.D., Deisenhofer J. Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure. 1994;2:1259–1270. doi: 10.1016/s0969-2126(94)00126-x. [DOI] [PubMed] [Google Scholar]
  58. Xia D., Henry L.J., Gerard R.D., Deisenhofer J. Structure of the receptor binding domain of adenovirus type 5 fiber protein. In: Doerfler W., Boehm P., editors. The Molecular Repertoire of Adenoviruses I. Springer; Berlin: 1995. pp. 39–46. [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES