Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;4(2):179–195. doi: 10.1016/0168-1702(86)90040-7

Inhibition of the assembly of Newcastle disease virus by monensin

Yoshida Tetsuya 1,, Nakayama Yasuhiro 2, Nagura Hiroshi 2, Toyoda Tetsuya 2, Nishikawa Kazuo 2, Hamaguchi Michinari 2, Nagai Yoshiyuki 2
PMCID: PMC7134188  PMID: 3518275

Abstract

Monensin inhibits the intracellular transport of the glycoproteins of Newcastle disease virus between cis and trans Golgi stacks of infected BHK cells, as evidenced by its effect upon their post-translational modifications such as fatty acid acylation, glycosylation and proteolytic cleavage. Thus the drug has markedly altered the subcellular distribution of the glycoproteins so that they accumulate in the internal smooth membranes but are virtually absent in the plasma membrane. These glycoproteins that accumulated in intracellular membranes have a cytoplasmic domain susceptible to protease digestion and thus are transmembranous. Under such conditions, the behavior of M protein, which plays a crucial role in virus assembly (Y. Nagai et al., 1976, Virology 69, 523–538), has been analyzed. It has been found that the M protein can neither associate with the internal membranes nor bind to the plasma membrane. Thus no virus budding has been observed, either at the plasma membranes or at internal membranes. These results substantiate the view that the interaction between M and glycoproteins is of great importance for virus assembly and suggest further that this interaction is possible only when the glycoproteins have been incorporated into the plasma membrane.

Keywords: Newcastle disease virus, monensin, viral glycoproteins, M protein

References

  1. Alonso F.V., Compans R.W. Differential effect of monensin on enveloped viruses that form at distinct plasma membrane domains. J. Cell Biol. 1981;89:700–705. doi: 10.1083/jcb.89.3.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alonso-Caplen F.V., Matsuoka Y., Wilcox G.E., Compans R.W. Replication and morpho-genesis of avian coronavirus in Vero cells and their inhibition by monensin. Virus Res. 1984;1:153–167. doi: 10.1016/0168-1702(84)90070-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumberg B.M., Rose K., Simona M.G., Roux L., Giorgi C., Kolakofsky D. Analysis of the Sendai virus M gene and protein. J. Virol. 1984;52:656–663. doi: 10.1128/jvi.52.2.656-663.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caliguiri L.A., Tamm I. The role of cytoplasmic membranes in poliovirus biosynthesis. Virology. 1970;42:100–111. doi: 10.1016/0042-6822(70)90242-4. [DOI] [PubMed] [Google Scholar]
  5. Chatis P.A., Morrison T.G. Fatty acid modification of Newcastle disease virus glycoproteins. J. Virol. 1982;43:342–347. doi: 10.1128/jvi.43.1.342-347.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins P.L., Huang Y.T., Wertz G.W. Vol. 81. 1984. Nucleotide sequence of the gene encoding the fusion (F) glycoprotein of human respiratory syncytial virus; pp. 7683–7687. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Compans R.W., Klenk H.-D. Viral membranes. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol. 13. Plenum Press; New York: 1979. pp. 293–407. (Structure and Assembly, Comprehensive Virology). [Google Scholar]
  8. Dubois-Dalcq M., Holmes K.V., Rentier B. Springer-Verlag; Vienna: 1984. Assembly of Enveloped RNA Viruses; pp. 1–253. [Google Scholar]
  9. Dunphy W.G., Rothman J.E. Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. J. Cell Biol. 1983;97:270–275. doi: 10.1083/jcb.97.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gregoriades A. Interaction of influenza M protein with viral lipid and phosphatidylcholine vesicles. J. Virol. 1980;36:470–479. doi: 10.1128/jvi.36.2.470-479.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gregoriades A., Frangione B. Insertion of influenza M protein into the viral lipid bilayer and localization of site of insertion. J. Virol. 1981;40:323–328. doi: 10.1128/jvi.40.1.323-328.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Griffiths G., Brands R., Burke B., Louvard D., Warren G. Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport. J. Cell Biol. 1982;95:781–792. doi: 10.1083/jcb.95.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Griffiths G., Quinn P., Warren G. Dissection of the Golgi complex. 1. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki forest virus. J. Cell Biol. 1983;96:835–850. doi: 10.1083/jcb.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hidaka Y., Kanda T., Iwasaki K., Nomoto A., Shioda T., Shibuta H. Nucleotide sequence of a Sendai virus genome region covering the entire M gene and the 3' proximal 1013 nucleotides of the F gene. Nucleic Acid Res. 1984;12:7965–7973. doi: 10.1093/nar/12.21.7965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hiebert S.W., Paterson R.G., Lamb R.A. Hemagglutinin-neuraminidase protein of the paramyxovirus simian virus 5: Nucleotide sequence of the mRNA predicts an N-terminal membrane anchor. J. Virol. 1985;54:1–6. doi: 10.1128/jvi.54.1.1-6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hsu M., Choppin P.W. Vol. 81. 1984. Analysis of Sendai virus mRNA with cDNA clones of viral genes and sequences of biologically important regions of the fusion protein; pp. 7732–7736. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson D.C., Schlesinger M.J. Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology. 1980;103:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
  18. Lamb R.A., Choppin P.W. The synthesis of Sendai virus polypeptides in infected cells. 2. Intracellular distribution of polypeptides. Virology. 1977;81:371–381. doi: 10.1016/0042-6822(77)90153-2. [DOI] [PubMed] [Google Scholar]
  19. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  20. Matsumoto T. Assembly of paramyxoviruses. Microbiol. Immunol. 1982;26:285–320. doi: 10.1111/j.1348-0421.1982.tb00180.x. [DOI] [PubMed] [Google Scholar]
  21. Morrison T., Ward L.J., Semerjian A. Intracellular processing of the Newcastle disease virus function glycoprotein. J. Virol. 1985;53:851–857. doi: 10.1128/jvi.53.3.851-857.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nagai Y., Maeno K., linuma M., Yoshida T., Matsumoto T. Inhibition of virus growth by ouabain: Effect of ouabain on the growth of HVJ in chick embryo cells. J. Virol. 1972;9:234–243. doi: 10.1128/jvi.9.2.234-243.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagai Y., Ogura H., Klenk H.-D. Studies on the assembly of the envelope of Newcastle disease virus. Virology. 1976;69:523–538. doi: 10.1016/0042-6822(76)90482-7. [DOI] [PubMed] [Google Scholar]
  24. Nagai Y., Klenk H.-D., Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology. 1976;72:494–508. doi: 10.1016/0042-6822(76)90178-1. [DOI] [PubMed] [Google Scholar]
  25. Nagai Y., Yoshida T., Hamaguchi M., Naruse H., Iinuma M., Maeno K., Matsumoto T. The pathogenicity of Newcastle disease virus isolated from migrating and domestic ducks and the susceptibility of the viral glycoproteins to proteolytic cleavage. Microbiol. Immunol. 1980;24:173–177. doi: 10.1111/j.1348-0421.1980.tb00575.x. [DOI] [PubMed] [Google Scholar]
  26. Nagai Y., Yoshida T., Hamaguchi M., Naruse H., Hasegawa H., Yoshimura S., Watanabe K. Subcellular location of the major protein antigens of paramyxoviruses revealed by immunoperoxidase cytochemistry. Microbiol. Immunol. 1983;27:531–545. doi: 10.1111/j.1348-0421.1983.tb00614.x. [DOI] [PubMed] [Google Scholar]
  27. Naruse H., Nagai Y., Yoshida T., Hamaguchi M., Matsumoto T., Isomura S., Suzuki S. The polypeptides of mumps virus and their synthesis in infected chick embryo cells. Virology. 1981;112:119–140. doi: 10.1016/0042-6822(81)90618-8. [DOI] [PubMed] [Google Scholar]
  28. Nieman H., Boschek B., Evans D., Rosing M., Tamura I., Klenk H.-D. Posttranslational glycosylation of coronavirus glycoprotein E1: Inhibition by monensin. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Paterson R.G., Harris T.J.R., Lamb R.A. Vol. 81. 1984. Fusion protein of the paramyxovirus simian virus 5: Nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein; pp. 6706–6710. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pressman B.C. Biological applications of ionophores. Annu. Rev. Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  31. Roth J., Berger E.G. Immunocytochemical localization of galactosyltransferase in HeLa cells: Codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J. Cell Biol. 1982;92:223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schmidt M.F.G., Schlesinger M.J. Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. J. Biol. Chem. 1980;255:3334–3339. [PubMed] [Google Scholar]
  33. Tartakoff A.M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983;32:1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  34. Warren L., Glick M.C., Nass M.K. 1. Methods of isolation of the surface membrane. J. Cell Physiol. 1966;68:269–288. [Google Scholar]
  35. Yoshida T., Nagai Y., Yoshii S., Maeno K., Matsumoto T., Hoshino M. Membrane (M) protein of HVJ (Sendai virus): Its role in virus assembly. Virology. 1976;71:143–161. doi: 10.1016/0042-6822(76)90101-x. [DOI] [PubMed] [Google Scholar]
  36. Yoshida T., Nagai Y., Maeno K., linuma M., Hamaguchi M., Matsumoto T., Nagayoshi S., Hoshino M. Studies on the role of M protein in virus assembly using a ts mutant of HVJ (Sendai virus) Virology. 1979;92:139–154. doi: 10.1016/0042-6822(79)90220-4. [DOI] [PubMed] [Google Scholar]
  37. Yoshida T., Hamaguchi M., Naruse H., Nagai Y. Persistent infection by a temperature-sensitive mutant isolated from a Sendai virus (HVJ) carrier culture: Its initiation and maintenance without aid of defective interfering particles. Virology. 1982;120:329–339. doi: 10.1016/0042-6822(82)90034-4. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES