Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;8(4):363–371. doi: 10.1016/0168-1702(87)90008-6

The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV)

Liesbeth Jacobs a, Raoul de Groot a, Bernard AM van der Zeijst 2, Marian C Horzinek a, Willy Spaan
PMCID: PMC7134191  PMID: 2829461

Abstract

The amino acid sequence of the peplomer protein of transmissible gastroenteritis virus (TGEV) has been derived from the cloned cDNA sequence. The gene encodes a protein of 1447 amino acids with a molecular weight of 159 574. Comparison with the primary structure of the peplomer protein of feline infectious peritonitis virus (FIPV) (de Groot et al., 1987b) revealed one domain, from amino acids 1 to 274, in which the nucleotide homology was 39%, whereas in the second domain (from residues 275 to 1447) the homology was 93%.

Keywords: Coronavirus TGEV; Sequence, peplomer protein; TGEV, FIPV

References

  1. Binns M.M., Boursnell M.E.G., Cavanagh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  2. Brian D.A., Dennis D.E., Guy J.S. Genome of porcine transmissible gastroenteritis virus. J. Virol. 1980;34:410–415. doi: 10.1128/jvi.34.2.410-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown T.D.K., Boursnell M.E.G. Avian infectious bronchitis virus genomic RNA contains sequence homologies at the intergenic boundaries. Virus Res. 1984;1:15–24. [Google Scholar]
  4. Cavanagh D. Coronavirus IBV: Structural Characterization of the spike protein. J. Gen. Virol. 1983;64:2577–2583. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
  5. Delmas B., Guelfi J, Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986;67:1405–1418. doi: 10.1099/0022-1317-67-7-1405. [DOI] [PubMed] [Google Scholar]
  6. Eisenberg D., Schwarz E., Komazomy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984;179:125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  7. Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.T. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978/1979;3:179–190. [Google Scholar]
  8. De Groot R.J., Luytjes W., Horzinek M.C., van der Zeijst B.A.M., Spaan W.J.M., Lenstra J.A. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 1987;197 doi: 10.1016/0022-2836(87)90422-0. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Groot R.J., Maduro J., Lenstra J.A., Horzinek M.C., van der Zeijst B.A.M., Spaan W.J.M. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 1987;68 doi: 10.1099/0022-1317-68-10-2639. in press. [DOI] [PubMed] [Google Scholar]
  10. Gubler U., Hoffman B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  11. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983;166:557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  12. Horzinek M.C., Lutz H., Pedersen N.C. Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Infect, and Immum. 1982;37:1148–1155. doi: 10.1128/iai.37.3.1148-1155.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hu S., Bruszewski J., Boone T., Souza L. Cloning and expression of the surface glycoprotein gp195 of procine transmissible gastroenteritis virus. In: Chanock R.M., Lemer R.A., editors. Modern Approaches to Vaccines. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y: 1984. pp. 219–223. [Google Scholar]
  14. Jacobs L., van der Zeijst B.A.M., Horzinek M.C. Characterisation and translation of transmissible gastroenteritis virus mRNAs. J. Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jimenez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralisation. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virol. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lai M.M.C., Baric R.S., Makino S., Keck J.G., Egbert J., Leibowitz J.L., Stohlman S.A. Recombination between nonsegmented RNA genomes of murine coronaviruses. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laude H., Chapsal J.M., Guelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
  19. Lipman D.J., Pearson W.R. Rapid and sensitive protein similarity searches. Science. 1985;227:1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  20. Makino S., Keck J.G., Stohlman S.A., Lai M.M.C. High frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; 1982. Molecular cloning. (A laboratory manual). [Google Scholar]
  22. Masatoshi N., Gojobozi T. Simple methods for estimating the number of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 1986;3:418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  23. Neuberger A., Gottschalk A., Marshall R.O., Spiro R.G. Carbohydrate peptide linkages in glycoproteins and methods for their elucidation. In: Gottschalk A., editor. The glycoproteins: their Composition, Structure and Function. Elsevier; Amsterdam: 1972. pp. 450–490. [Google Scholar]
  24. Niesters H.G.M., Lenstra J.A., Spaan W.J.M., Zijderveld A.J., Bleumink-Pluym N.M.C., Hong F., Scharrenburg G.J.M., Horzinek M.C., van der Zeijst B.A.M. The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Vir. Res. 1986;5:253–263. doi: 10.1016/0168-1702(86)90022-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pederson N.C., Ward J., Mengeling W.L. Antigenic relationship of feline infectious peritonitis virus to coronaviruses of other species. Arch. Virol. 1978;58:45–53. doi: 10.1007/BF01315534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rasschaert D., Laude H. The predicted primary structure of the peplomer E2 of porcine coronavirus TGEV. J. Gen. Virol. 1987;68 doi: 10.1099/0022-1317-68-7-1883. in press. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schmidt J., Skinner M., Siddel S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  29. Spaan W.J.M., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B.A.M., Siddell S.G. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO. J. 1983;2:1844–1893. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Staden R. Diagon: an interactive graphics program for comparing and aligning nucleic acid for amino acid sequences. Nucl. Acid. Res. 1982;10:2951–2961. doi: 10.1093/nar/10.9.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yanish-Perron C., Vierra J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mp18 and pUC 19 vectors. Gene. 1985;33:103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES