Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;17(2):103–118. doi: 10.1016/0165-5728(88)90018-5

Induction of autoimmune reactions to myelin basic protein in measles virus encephalitis in Lewis rats

Uwe G Liebert 2, Christopher Linington 1,2,∗∗, Volker ter Meulen 2,
PMCID: PMC7134202  PMID: 2447122

Abstract

Intracerebral inoculation of weanling Lewis rats with measles virus led to the development of subacute measles encephalomyelitis (SAME) 4–8 weeks after infection. The disease is characterized pathologically by an intense inflammatory infiltration within both the white and grey matter of the central nervous system (CNS) without apparent demyelination. Both during and after SAME splenic lymphocytes from these animals could be restimulated in vitro to proliferate in the presence of myelin basic protein (MBP). MBP-specific class II MHC-restricted T cell lines were isolated from this cell population. They were shown to exhibit no cross-reactivity with measles virus and to induce experimental allergic encephalitis (EAE) in naive syngeneic recipients following adoptive transfer. The clinical and histopathological signs of this T cell-mediated disease were identical to that seen in classical T cell-mediated EAE. A humoral immune response to MBP was only detected in a limited number of those rats with SAME. These results indicate that autoimmune reactions to brain antigen can arise during measles virus infection which may contribute to the pathogenesis of measles virus-associated encephalomyelitis.

Keywords: Autoimmunity, Myelin basic protein, Measles virus encephalitis, Encephalomyelitis

Abbreviations: SAME, subacute measles encephalomyelitis; CNS, central nervous system; MBP, myelin basic protein; MV, measles viral antigen; VC, Vero cell membrane antigen; PPD, purified protein derivative of tuberculin; EAE, experimental allergic encephalomyelitis; BM, basic culture medium; TCGF, T cell growth factor; APC, antigen presenting cells; CFA, complete Freund's adjuvant; KLH, keyhole limpet hemocyanin

References

  1. Alvord E.C. In: Experimental Allergic Encephalomyelitis, A Useful Model for Multiple Sclerosis. Alvord E.C. Jr., Kies M.W., Suckling A.J., editors. Alan R. Liss; New York: 1984. pp. 523–537. [Google Scholar]
  2. Ben-Nun A., Wekerle H., Cohen I.R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol. 1981;11:195–197. doi: 10.1002/eji.1830110307. [DOI] [PubMed] [Google Scholar]
  3. Eylar E.H., Kniskern P.J., Jackson J.J. Myelin basic protein. Methods Enzymol. 1979;32B:323. [PubMed] [Google Scholar]
  4. Fontana A., Fierz W., Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature. 1984;307:273–276. doi: 10.1038/307273a0. [DOI] [PubMed] [Google Scholar]
  5. Fujinami R.S., Oldstone M.B.A. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985;230:1043–1045. doi: 10.1126/science.2414848. [DOI] [PubMed] [Google Scholar]
  6. Fujinami R.S., Oldstone M.B.A., Wroblewska Z., Frankel M.E., Koprowski H. Vol. 80. 1983. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments; pp. 2346–2350. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gendelman H.E., Wolinsky J.S., Johnson R.T., Pressman N.J., Pezeshkpour G.H., Boisset G.F. Measles encephalomyelitis: lack of evidence of viral invasion of the central nervous system and quantitative study of the nature of demyelination. Ann. Neurol. 1984;15:353–360. doi: 10.1002/ana.410150409. [DOI] [PubMed] [Google Scholar]
  8. Jahnke U., Fischer E.H., Alvord E.C., Jr. Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science. 1985;229:282–284. doi: 10.1126/science.2409602. [DOI] [PubMed] [Google Scholar]
  9. Johnson R.T., Griffin D.E., Hirsch R.L., Wolinsky J.S., Roedenbeck S., Soriano I.L. Measles encephalomyelitis: clinical and immunological studies. N. Engl. J. Med. 1984;310:137–142. doi: 10.1056/NEJM198401193100301. [DOI] [PubMed] [Google Scholar]
  10. Lassmann H. Springer Verlag; Berlin - Heidelberg - New York - Tokyo: 1983. Comparative Neuropathology of Chronic Experimental Allergic Encephalomyelitis and Multiple Sclerosis. [PubMed] [Google Scholar]
  11. Levine S. Hyperacute, neutrophilic, and localized forms of experimental allergic encephalomyelitis: a review. Acta Neuropathol. 1974;28:179–189. doi: 10.1007/BF00719023. [DOI] [PubMed] [Google Scholar]
  12. Levine S., Wenk E.J. Studies on the mechanism of altered susceptibility to experimental allergic encephalomyelitis. Am. J. Pathol. 1961;39:419–441. [PMC free article] [PubMed] [Google Scholar]
  13. Liebert U.G., ter Meulen V. Virological aspects of measles virus induced encephalomyelitis in Lewis and BN rats. J. Gen. Virol. 1987;68:1715–1722. doi: 10.1099/0022-1317-68-6-1715. [DOI] [PubMed] [Google Scholar]
  14. Liebert U.G., Seitz R.J., Weber T., Wechsler W. Immunocytochemical studies of serum proteins and immunoglobulins in human sural nerve biopsies. Acta Neuropathol. 1985;68:39–51. doi: 10.1007/BF00688954. [DOI] [PubMed] [Google Scholar]
  15. Linington C., Izumo S., Suzuki M., Uyemura K., Meyermann R., Wekerle H. A permanent rat T cell line that mediates experimental allergic neuritis in the Lewis rat in vivo. J. Immunol. 1984;133:1946–1950. [PubMed] [Google Scholar]
  16. Londei M., Lamb J.R., Bottazzo G.F., Feldmann M. Epithelial cells expressing aberrant MHC class II determinants can present antigen to cloned human T cells. Nature. 1984;312:639–641. doi: 10.1038/312639a0. [DOI] [PubMed] [Google Scholar]
  17. Martenson R.E. In: Experimental Allergic Encephalomyelitis, A Useful Model for Multiple Sclerosis. Alvord E.C. Jr., Kies M.W., Suckling A.J., editors. Alan R. Liss; New York: 1984. pp. 511–521. [Google Scholar]
  18. Massa P.T., Wege H., ter Meulen V. Analysis of murine hepatitis virus (JHM strain) tropism toward Lewis rat glial cells in vitro. Lab. Invest. 1986;55:318–327. [PubMed] [Google Scholar]
  19. Massa P.T., Dörries R., ter Meulen V. Viral particles induce Ia antigen expression on astrocytes. Nature. 1986;320:543–546. doi: 10.1038/320543a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Massanari R.M., Paterson P.Y., Lipton H.L. Potentiation of experimental allergic encephalomyelitis in hamsters with persistent encephalitis due to measles virus. J. Infect. Dis. 1979;139:297–303. doi: 10.1093/infdis/139.3.297. [DOI] [PubMed] [Google Scholar]
  21. Miller H.G., Stanton J.B., Gibbons J.L. Parainfectious encephalomyelitis and related syndromes. Q. J. Med. 1956;25:427–505. [PubMed] [Google Scholar]
  22. Nagashima K., Wege H., Meyermann R., ter Meulen V. Coronavirus induced subacute demyelinating encephalomyelitis in rat. A morphological analysis. Acta Neuropathol. 1978;44:63–70. doi: 10.1007/BF00691641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Notkins A.L., Onodera T., Prabhakar E.L. In: Concepts in Viral Pathogenesis. Notkins A.L., Oldstone M.B.A., editors. Springer; New York - Berlin - Heidelberg - Tokyo: 1984. pp. 210–215. [Google Scholar]
  24. Schluesener H.J., Wekerle H. Autoaggressive T lymphocyte lines recognize the encephalitogenic region of myelin basic protein: in vitro selection from unprimed rat T lymphocyte populations. J. Immunol. 1985;135:3128–3133. [PubMed] [Google Scholar]
  25. Sheshberadaran H., Norrby E. Three monoclonal antibodies against measles virus F protein cross-react with cellular stress proteins. J. Virol. 1984;52:995–999. doi: 10.1128/jvi.52.3.995-999.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Watanabe R., Wege H., ter Meulen V. Adoptive transfer of EAE-like lesions from rats with coronavirus-induced demyelinating encephalomyelitis. Nature. 1983;305:150–153. doi: 10.1038/305150a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wege H., Watanabe R., ter Meulen V. Relapsing subacute demyelinating encephalomyelitis in rats during the course of coronavirus JHM infection. J. Neuroimmunol. 1984;6:325–336. doi: 10.1016/0165-5728(84)90022-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Willenborg D.O. Experimental allergic encephalomyelitis in the Lewis rat: studies on the mechanisms of recovery from disease and acquired resistance reinduction. J. Immunol. 1979;123:1145–1150. [PubMed] [Google Scholar]
  29. Williams R.M., Lees M.B., Cambi F., Macklin W.B. Chronic experimental allergic encephalomyelitis induced in rabbits with bovine white matter proteolipid apoprotein. J. Neuropathol. Exp. Neurol. 1982;41:508–521. doi: 10.1097/00005072-198209000-00004. [DOI] [PubMed] [Google Scholar]
  30. Yoshimura T., Kunishiha T., Sakai K., Endoh M., Namikawa T., Tabira T. Chronic experimental allergic encephalomyelitis in guinea pigs induced by proteolipid protein. J. Neurol. Sci. 1985;69:47–58. doi: 10.1016/0022-510x(85)90006-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neuroimmunology are provided here courtesy of Elsevier

RESOURCES