Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;18(2):203–217. doi: 10.1016/0168-1702(91)90019-R

Expression and cellular localisation of porcine transmissible gastroenteritis virus N and M proteins by recombinant vaccinia viruses

David J Pulford 1, Paul Britton 1,
PMCID: PMC7134232  PMID: 1645905

Abstract

Porcine transmissible gastroenteritis virus (TGEV) nucleoprotein and integral membrane protein genes were cloned into the vaccinia virus insertion vector, pGS20, in the correct orientation for expression under the control of the vaccinia P7.5K promoter. Recombinant vaccinia viruses were generated by in vivo homologous recombination of the insertion vector with the WR strain of vaccinia virus. Nucleoprotein (N) expressed by both recombinant vaccinia virus and TGEV had a relative molecular mass (Mr) of 47,000 and was susceptible to degradation at the C-terminus yielding discrete breakdown products. The integral membrane protein (M) expressed by a recombinant vaccinia virus and TGEV was sensitive to endogly-cosidase H reducing the mature polypeptide of Mr 29,000 to a species of Mr 27,000. Expression of M by recombinant vaccinia virus was inhibited during early infection due to a cryptic vaccinia virus transcriptional termination signal within the TGEV coding sequence. Indirect immunofluorescence showed that both N and M were only localised in the cell cytoplasm of either TGEV or recombinant vaccinia virus infected cells. Antisera from mice infected with recombinant viruses immunoprecipitated specific TGEV antigens from lysates of TGEV infected cells but had little significant TGEV neutralising activity in vitro.

Keywords: Transmissible gastroenteritis virus, Nucleoprotein, Integral membrane protein, vaccinia virus, Porcine

References

  1. Britton P., Carmenes R.S., Page K.W., Garwes D.J., Parra F. Sequence of the nucleoprotein gene from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Mol. Microbiol. 1988;2:89–99. [PubMed] [Google Scholar]
  2. Britton P., Carmenes R.S., Page K.W., Garwes D.J. The integral membrane protein from a virulent isolate of transmissible gastroenteritis virus: molecular characterisation, sequence and expres- sion in Escherichia coli. Mol. Microbiol. 1988;2:497–505. doi: 10.1111/j.1365-2958.1988.tb00056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Browne H.M., Churcher M.J., Stanley M.A., Smith G.L., Minson A.C. Analysis of the L1 gene product of human papillomavirus type 16 by expression in a vaccinia virus recombinant. J. Gen. Virol. 1986;69:1263–1273. doi: 10.1099/0022-1317-69-6-1263. [DOI] [PubMed] [Google Scholar]
  4. Cochran M.A., Puckett C., Moss B. In vitro mutagenesis of the promoter region for vaccinia virus gene: evidence for tandem early and late regulatory signals. J. Virol. 1985;53:30–37. doi: 10.1128/jvi.54.1.30-37.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garwes D.J., Pocock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
  6. Garwes D.J., Bountiff L., Millson G.C., Elleman C.J. Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line. In: Rottier P.J.M., van der Zeijst B.A.M., Horzinek M., editors. Vol. 178. Plenum Press; New York and London: 1984. pp. 79–93. (Molecular Biology and Pathogenesis of Coronaviruses. Advances in Experimental Medical Biology). [DOI] [PubMed] [Google Scholar]
  7. Garwes D.J., Stewart F., Elleman C.J. Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. In: Lai M.M.C., Stohlman S.A., editors. Vol. 218. Plenum Press; New York and London: 1987. pp. 509–516. (Coronaviruses. Advances in Experimental Medical Biology). [DOI] [PubMed] [Google Scholar]
  8. Garwes D.J., Stewart F., Cartwright S.F., Brown I. Differentiation of porcine coronavirus from transmissible gastroenteritis virus. Vet. Rec. 1988;122:86–87. doi: 10.1136/vr.122.4.86. [DOI] [PubMed] [Google Scholar]
  9. Jimenez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralisation. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Laude H., Rasschaert D., Huet J.C. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  12. Mackett M., Smith G.L. Vaccinia virus expression vectors. J. Gen. Virol. 1986;67:2067–2082. doi: 10.1099/0022-1317-67-10-2067. [DOI] [PubMed] [Google Scholar]
  13. Mackett M., Smith G.L., Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 1984;49:857–864. doi: 10.1128/jvi.49.3.857-864.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mackett M., Smith G.L., Moss B. The construction and characterisation of vaccinia virus recombinants expressing foreign genes. In: Glover D.M., editor. Vol. 2. IRL Press; Oxford, Washington D.C: 1985. pp. 191–211. (DNA Cloning, A Practical Approach). [Google Scholar]
  15. Maniatis T., Fritsch E.F., Sambrook J. 1st edit. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  16. Merchlinsky M., Moss B. Resolution of vaccinia virus DNA concatamer junctions requires late-gene expression. J. Virol. 1989;63:1595–1603. doi: 10.1128/jvi.63.4.1595-1603.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moss B., Flexner C. Vaccinia virus expression vectors. Ann. Rev. Immunol. 1987;5:305–324. doi: 10.1146/annurev.iy.05.040187.001513. [DOI] [PubMed] [Google Scholar]
  18. Murphy G., Kavanagh T. Speeding-up the sequencing of double stranded DNA. Nucl. Acids Res. 1988;16:5198. doi: 10.1093/nar/16.11.5198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pocock D.H., Garwes D.J. The influence of pH on the growth and stability of transmissible gastroenteritis virus in vitro. Arch. Virol. 1975;49:239–247. doi: 10.1007/BF01317542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pulford D.J., Britton P., Page K.W., Garwes D.J. Expression of TGEV structural genes in virus vectors. In: Cavanagh D., Brown T.D.K., editors. Vol. 276. Plenum Press; New York and London: 1990. pp. 223–231. (Coronaviruses and Their Diseases. Advances in Experimental Medical Biology). [DOI] [PubMed] [Google Scholar]
  21. Rohrmann G., Yeun L., Moss B. Transcription of vaccinia virus early genes by enzymes isolated from vaccinia virions terminates downstream of a regulatory sequence. Cell. 1986;46:1029–1035. doi: 10.1016/0092-8674(86)90702-6. [DOI] [PubMed] [Google Scholar]
  22. Silhavy T.J., Berman M.L., Enquist L.W. 1st edit. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1984. Experiments with Gene Fusions; pp. 164–165. [Google Scholar]
  23. Tooze J., Tooze S.A., Warren G. Laminated cisternae of the rough endoplasmic reticulum induced by coronavirus MHV-A59 infection. Eur. J. Cell Biol. 1985;26:108–115. [PubMed] [Google Scholar]
  24. Welch S.J.W., Saif L.J. Monoclonal antibodies to a virulent strain of TGEV: comparison of reactivity with virulent and attenuated viruses. Arch. Virol. 1988;101:221–235. doi: 10.1007/BF01311003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woods R.D., Wesley R.D., Kapke P.A. Complement-dependent neutralisation of Transmissible Gastroenteritis virus by monoclonal antibodies. In: Lai M.M.C., Stohlman S.A., editors. Vol. 218. Plenum Press; New York and London: 1987. pp. 493–500. (Coronaviruses. Advances in Experimental Medical Biology). [DOI] [PubMed] [Google Scholar]
  26. Zhirnov O.P., Bukrinskaya A.G. Two forms of Influenza virus nucleoprotein in infected cells and virions. Virology. 1981;109:174–179. doi: 10.1016/0042-6822(81)90482-7. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES