Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;22(3):215–225. doi: 10.1016/0168-1702(92)90053-C

Assembly of G1 and G2 glycoprotein oligomers in Punta Toro virus-infected cells

Chen Si-Yi 1, Matsuoka Yumiko 2, Richard W Compans 1,
PMCID: PMC7134236  PMID: 1320791

Abstract

We have studied the oligomerization of the membrane glycoproteins of Punta Toro virus (PTV), a member of the Phlebovirus genus of the family Bunyaviridae, and the effect of glycosylation on protein stability and transport. By using sucrose gradient centrifugation, the G1 and G2 glycoproteins in PTV-infected or recombint-transfected cells were found to sediment as dimers after DSP cross-linking, suggesting that the G1 and G2 proteins are associated as dimers by non-covalent interactions. Pulse-chase and two-dimensional gel analysis indicate that dimerization occurs between newly synthesized G1 and G2 proteins, and that a small fraction of the G2 proteins is assembled into G2 homodimers. The amounts of G1 and G2 proteins were substantially decreased, while the amounts of nucleocapsid protein remained nearly unchanged, when PTV-infected cells were treated with the glycosylation inhibitor tunicamycin, indicating that the G1 and G2 proteins are unstable if glycosylation is prevented.

Keywords: Punta Toro virus, Oligomerization, Glycoprotein, Tunicamycin

Footnotes

Presented in part at the Eighth International Conference on Negative Strand Viruses, Charleston, SC, U.S.A., 15–20 September 1991.

References

  1. Bishop D.H.L. Bunyaviridae. In: Fields B.N., editor. Raven; New York: 1990. pp. 1155–1174. [Google Scholar]
  2. Chen S.-Y., Compans R.W. Oligomerization, transport, and Golgi retention of Punta Toro virus glycoproteins. J. Virol. 1991;65:5902–5909. doi: 10.1128/jvi.65.11.5902-5909.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen S.-Y., Matsuoka Y., Compans R.W. Assembly and polarized release of Punta Toro virus and effects of Brefeldin A. J. Virol. 1991;65:1427–1439. doi: 10.1128/jvi.65.3.1427-1439.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen S.-Y., Matsuoka Y., Compans R.W. Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein. Virology. 1991;183:351–365. doi: 10.1016/0042-6822(91)90148-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eshita Y., Ericson B., Romanowski V., Bishop D.H.L. Analysis of the mRNA transcription processed of snowshoe hare bunyavirus S and M RNA species. J. Virol. 1985;55:681–689. doi: 10.1128/jvi.55.3.681-689.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuerst T.R., Niles E.G., Studier F.W., Moss B. Vol. 83. 1986. Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes T7 RNA polymerase; pp. 8122–8126. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson R., Leavitt R., Kornfeld S., Schlesinger S. Synthesis and infectivity of vesicular stomatitis virus containing nonglycosylated G protein. Cell. 1978;13:671–679. doi: 10.1016/0092-8674(78)90217-9. [DOI] [PubMed] [Google Scholar]
  8. Ihara T., Smith J., Dalrymple J.M., Bishop D.H.L. Complete sequences of the glycoproteins and M RNA of Punta Toro Phlebovirus compared to those of Rift Valley fever virus. Virology. 1985;144:246–253. doi: 10.1016/0042-6822(85)90321-6. [DOI] [PubMed] [Google Scholar]
  9. Jackson M.R., Nilsson T., Peterson P.A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 1990;9:3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U.K. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Machamer C.E., Rose J.K. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 1987;105:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mahoney W.C., Duksin D. Biological activities of the two major components of tunicamycin. J. Biol. Chem. 1979;254:6572–6576. [PubMed] [Google Scholar]
  13. Matsuoka Y., Chen S.Y., Compans R.W. Bunyavirus protein transport and assembly. Curr. Top. Microbiol. Immunol. 1991;169:161–180. doi: 10.1007/978-3-642-76018-1_6. [DOI] [PubMed] [Google Scholar]
  14. Matsuoka Y., Ihara T., Bishop D.H.L., Compans R.W. Intracellular accumulation of Punta Toro virus glycoproteins expressed from cloned cDNA. Virology. 1988;167:251–260. doi: 10.1016/0042-6822(88)90075-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McEwen C.R. Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal. Biochem. 1967;20:114–149. doi: 10.1016/0003-2697(67)90271-0. [DOI] [PubMed] [Google Scholar]
  16. Murphy F.A., Harrison A.K., Whitfield S.G. Bunyaviridae: morphologic and morphogenetic similarities of Bunyamwera serologic supergroup viruses and several other arthropod-borne viruses. Intervirology. 1973;1:297–316. doi: 10.1159/000148858. [DOI] [PubMed] [Google Scholar]
  17. Rose J.K., Welch W.J., Sefton B.M., Esch F.S., Ling N. Vol. 77. 1980. Vesicular stomatitis virus glycoprotein is anchored in viral membrane by a hydrophobic domain near the COOH terminus; pp. 3884–3888. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rose J.K., Doms R.W. Regulation of protein export from the endoplasmic reticulum. Ann. Rev. Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  19. Sabatini D.D., Kreibich G., Morimoto T., Adesnik M. Mechanisms for the incorporation of proteins in membranes and organelles. J. Cell Biol. 1982;92:1–22. doi: 10.1083/jcb.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schmaljohn C.S., Hasty S.E., Rasmussen L., Dalrymple J.M. Hantaan virus replication: effects of monensin, tunicamycin and endoglycosideases on the structural glycoproteins. J. Gen. Virol. 1986;67:707–717. doi: 10.1099/0022-1317-67-4-707. [DOI] [PubMed] [Google Scholar]
  21. Schwarz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki Forest, influenza and avian sarcoma virus by tunicamycin. J. Virol. 1976;19:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith J.F., Pifat D.Y. Morphogenesis of Sandfly fever viruses (Bunyaviridae family) Virology. 1982;121:61–81. doi: 10.1016/0042-6822(82)90118-0. [DOI] [PubMed] [Google Scholar]
  23. Tkacz J.S., Lampen J.D. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem. Biophys. Res. Comm. 1975;65:248–257. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
  24. Ulmanen I., Seppala P., Pettersson R.F. In vitro translation of Uukuniemi virus-specific RNAs: identification of a nonstructural protein and a precursor to the membrane glycoproteins. J. Virol. 1981;37:72–79. doi: 10.1128/jvi.37.1.72-79.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES