Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1999 Mar 2;40(2):123–133. doi: 10.1016/0168-1702(95)01262-1

Brefeldin A inhibits the antiviral action of interferon against encephalomyocarditis virus

GS Sidhu a,, AK Singh b, PN Raghunath a, S Sivaram b, RK Maheshwari a
PMCID: PMC7134369  PMID: 8725108

Abstract

Brefeldin A (BFA), a unique fungal metabolite of a 13-membered lactone ring, exhibits various biological actions, including antitumor, antifungal and antiviral activities. In the present study, mouse LB cells were treated with various concentrations of interferon (IFN) and/or BFA overnight and infected with encephalomyocarditis virus (EMCV) after removal of IFN and BFA. Doses of BFA which neither inhibit the metabolism of the cell nor the infectivity of EMCV, decreased the IFN-induced antiviral activity against EMCV as demonstrated by virus titer from supernatants. Since 2–5A synthetase and double-stranded RNA (dsRNA)-dependent protein kinase (PKR) have been suggested to be involved in the antiviral action of IFN against EMCV, their activities were investigated in LB cells after BFA treatment. Northern blot analysis and in situ hybridization showed a decrease (2–3-fold) in the mRNA of 2′–5′ oligoadenylate (2–5A) synthetase after BFA treatment. BFA also inhibited the activity of 2–5A synthetase, 2–5A dependent RNase and phosphorylation of PKR in cellular extracts, indicating that BFA may be exerting its inhibitory effect both at the transcriptional and post-transcriptional levels. This study reports a new biological action of BFA, demonstrating that BFA antagonized the antiviral action of IFN by inhibiting IFN-induced enzymatic pathways. These studies also suggest that both 2–5A and PKR are important in the antiviral activity of IFN against EMCV.

Keywords: Brefeldin A, MouseLB cells, Interferon, Encephalomyocarditis

References

  1. Adams D.O., Hamilton T.A. Phagocytic cells: cytotoxic activities of macrophages. In: Galkin J.I., Goldstein I.M., Synderman R., editors. Inflammation, Basic Principles and Clinical Correlates. Raven Press; New York: 1988. pp. 471–492. [Google Scholar]
  2. Aujean O., Sanceau J., Falcoff E., Falcoff R. Localization of enhanced ribonuclease activity and of phosphoprotein kinasein interferon treated Mengovirus-infect cells. Virology. 1979;92:583–586. doi: 10.1016/0042-6822(79)90162-4. [DOI] [PubMed] [Google Scholar]
  3. Cayley P.G., Silverman R.H., Balkwill F.R., McMohan M., Knight M., Kerr I.M. The 2–5A system and interferon action. Biochem. Biophys. Res. Commun. 1982;104:376–382. doi: 10.1016/0006-291x(82)90647-7. [DOI] [PubMed] [Google Scholar]
  4. Chen S.Y., Matsuoka Y., Compans R.W. Assembly and polarized release of punta toro virus and effects of Brefeldin A. J. Virol. 1991;65:1427–1439. doi: 10.1128/jvi.65.3.1427-1439.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheung P., Banfield B.W., Tufaso F. Brefeldin A arrests the maturation and egress of Herpes Simplex virus particles during infection. J. Virol. 1991;65:591–598. doi: 10.1128/jvi.65.4.1893-1904.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clemens M.J., Williams B.R.G. Inhibition of cell free protein synthesis by pppA2′p5′A2′p5′A: a novel oligonucleotide synthesized by interferon treated L cell extracts. Cell. 1978;13:565–572. doi: 10.1016/0092-8674(78)90329-x. [DOI] [PubMed] [Google Scholar]
  7. Doms R.W., Russ G., Yewdell J.W. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 1989;109:61–72. doi: 10.1083/jcb.109.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubois M.F., Hovanessian A.G. Modified subcellular localization of interferon induced P68 kinase during encephalomyocarditis virus infection. Virol. 1990;179:591–598. doi: 10.1016/0042-6822(90)90126-c. [DOI] [PubMed] [Google Scholar]
  9. Earl P.L., Moss B., Doms R.W. Folding, interaction with GRP78-BiP, assembly and transport of the human immunodeficiency virus type 1 envelope protein. J. Virol. 1991;65:2047–2055. doi: 10.1128/jvi.65.4.2047-2055.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farrell P.J., Balkow K., Hunt T., Jackson J., Trachsel H. Phosphorylation of initiation factor eIF2 and the control of reticulocyte protein synthesis. Cell. 1977;11:187–200. doi: 10.1016/0092-8674(77)90330-0. [DOI] [PubMed] [Google Scholar]
  11. Fujiwara T., Oda K., Yokota S., Takatsuki A., Ikenhara Y. Brefeldin A causes disassembly of the Golgi-complex and accumulation of secretory proteins in the endoplasmic reticulum. J. Biol. Chem. 1988;263:18545–18552. [PubMed] [Google Scholar]
  12. Galabru G., Hovanessian A. Autophosphorylation of the protein kinase dependent on double stranded RNA. J. Biol. Chem. 1987;262:15538–15544. [PubMed] [Google Scholar]
  13. Gupta S.L., Holmes S.L., Mehra L.L. Interferon action against Reovirus: activation of interferon induced protein kinase in mouse L929 cells upon Reovirus infection. Virology. 1982;120:495–499. doi: 10.1016/0042-6822(82)90051-4. [DOI] [PubMed] [Google Scholar]
  14. Harri E., LoeMer W., Singh H.P., Stahlin H., Tamm C. Die constitution von Brefeldin A. Helv. Chem. Acta. 1963;46:1235–1243. [Google Scholar]
  15. Hovanessian A.G. The double stranded RNA-activated protein kinase induced by interferon: dsRNA-PK. J. Interferon Res. 1989;9:641–647. doi: 10.1089/jir.1989.9.641. [DOI] [PubMed] [Google Scholar]
  16. Hovanessian A.G., Galabru J., Meurs E., Buffet-Janverse C., Svab J., Robert N. Rapid decrease in the levels of the double stranded RNA-dependent protein kinase during virus infection. Virology. 1987;159:126–136. doi: 10.1016/0042-6822(87)90355-2. [DOI] [PubMed] [Google Scholar]
  17. Hovanessian A.G., Wood J.N., Meurs E., Montagnies L. Vol. 76. 1979. Increased nuclease activity in cells treated with pppA2′p5′A2′p5′A; pp. 3261–3265. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerr I.M., Brown R.E., Ball L.A. Increased sensitivity of cell free protein synthesis to double stranded RNA after interferon treatment. Nature. 1974;250:57–59. doi: 10.1038/250057a0. [DOI] [PubMed] [Google Scholar]
  19. Knight M., Caley P.J., Silverman R.H., Wreschner D.H., Gilbert C.S., Brown R.E., Kerr I.M. Radioimmune, radiobinding and HPLC analysis of 2–5A and related oligonucleotides from intact cells. Nature. 1980;288:189–192. doi: 10.1038/288189a0. [DOI] [PubMed] [Google Scholar]
  20. Levintow L. The reproduction of picornavirus. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol 2. Plenum Press; New York: 1974. pp. 109–169. (Comprehensive Virology). [Google Scholar]
  21. Lippincott-Schwartz J., Yuan L.C., Banifacino J.S., Klausner R.G. Rapid distribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from the Golgi to ER. Cell. 1989;56:912–920. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Magner J.A., Papagiannes E. Blockade by brefeldin A of intracellular transport of secretory proteins in mouse pituitary cells; effects on the biosynthesis of thyrotropin and free cY-subunits. Endocrinology. 1988;122:912–920. doi: 10.1210/endo-122-3-912. [DOI] [PubMed] [Google Scholar]
  23. Maheshwari R.K., Friedman R.M. Production of stomatitis virus with low infectivity by interferon-treated cells. J. Gen. Virol. 1979;44:261–264. doi: 10.1099/0022-1317-44-1-261. [DOI] [PubMed] [Google Scholar]
  24. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratories; Cold Spring Harbor, New York: 1982. (Molecular cloning, A Laboratory Manual). [Google Scholar]
  25. Maynell L.A., Kirkegaard K., Klymkowski M.W. Inhibition of poliovirus RNA synthesis by Brefeldin A. J. Virol. 1992;66:1985–1994. doi: 10.1128/jvi.66.4.1985-1994.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Memet S., Besancon F., Bourgeade M.-F., Thang M.N. Direct induction of IFN-y and interferon α/β-inducible genes by double stranded RNA. J. Interferon Res. 1991;11:131–141. doi: 10.1089/jir.1991.11.131. [DOI] [PubMed] [Google Scholar]
  27. Misumi Y., Miki K., Takatsuki A., Tamma G., Ikenhara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 1986;261:11398–11403. [PubMed] [Google Scholar]
  28. Nolan-Sorden N.L., Lesiak N.L., Lesiak K., Bayard B., Torrence P.F., Silverman R.H. Photochemical cross-linking in oligonucleotide-protein complexes between a bromine-substituted 2–AA analog and 2–5A dependent RNase by ultraviolet lamp or laser. Anal. Biochem. 1990;184:298–304. doi: 10.1016/0003-2697(90)90684-2. [DOI] [PubMed] [Google Scholar]
  29. Pal R., Mumbauer S., Hoke G.M., Takats-Iki A., Sarnagadharan M.G. Brefeldin A inhibits the processing and secretion of envelope glycoproteins of human immunodeficiency virus type I. AIDS Res. Human Retrovir. 1991;7:707–712. doi: 10.1089/aid.1991.7.707. [DOI] [PubMed] [Google Scholar]
  30. Peltonem J., Jaakkola S., Gay K., Olsen D.R., Chu M.L., Uitto J. Expression of extracellular matrix genes by cultured human cells: localization of messenger RNAs and antigenic epitopes. Anal. Biochem. 1989;178:184–193. doi: 10.1016/0003-2697(89)90377-1. [DOI] [PubMed] [Google Scholar]
  31. Pestka S., Langer J.A., Zoon K.C., Samuel C.E. Interferons and their actions. Annu. Rev. Biochem. 1987;56:727–777. doi: 10.1146/annurev.bi.56.070187.003455. [DOI] [PubMed] [Google Scholar]
  32. Reaves B., Banting G. Perturbations of the morphology of the trans-Golgi network following BFA treatment: redistribution of a TGN specific integral membrane protein TGN38. J. Cell Biol. 1992;116:85–94. doi: 10.1083/jcb.116.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rice A.P., Duncan R., Hershey J.W.B., Kerr I.M. Double-stranded RNA-dependent protein kinase and 2–5A system are both actiiated in interferon treated, encephalomyocarditis virus-infected HeLa c cells. J. Virol. 1985;54:894–898. doi: 10.1128/jvi.54.3.894-898.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Safer B. 2B or not 2B: regulation of the catalytic utilization of eIF2. Cell. 1983;33:7–8. doi: 10.1016/0092-8674(83)90326-4. [DOI] [PubMed] [Google Scholar]
  35. Samuel C.E. Mechanisms of the antiviral action of interferons. Prog. Nucl. Acid. Res. Mol. Biol. 1988;35:27–72. doi: 10.1016/s0079-6603(08)60609-1. [DOI] [PubMed] [Google Scholar]
  36. Silverman R.H., Cayley P.J., Knight M., Gilbert C.S., Kerr I.M. Control of the ppp(A2′p)nA system in HeLa cells. Effects of interferon and virus infection. Eur. J. Biochem. 1982;124:131–138. doi: 10.1111/j.1432-1033.1982.tb05915.x. [DOI] [PubMed] [Google Scholar]
  37. Singh V.K., Maheshwari R.K., Damewood G.P., IV, Stephenson C.B., Oliver C., Friedman R.M. Interferons alter intracellular transport of vesicular stomatitis virus glycoprotein. J. Biol. Regul. Homeostat. Agents. 1988;2:53–62. [PubMed] [Google Scholar]
  38. Staeheli P. Interferon induced proteins and antiviral state. Adv. Virus Res. 1990;38:147–200. doi: 10.1016/s0065-3527(08)60862-3. [DOI] [PubMed] [Google Scholar]
  39. Stark G.R., Brown R.E., Kerr I.M. Assay of (2′–5′)-olligoadenylic acid synthetase levels in cells and tissues: a convenient pily(I).poly (C) paper bound enzyme assay. Methods Enzymol. 1982;79:194–199. doi: 10.1016/s0076-6879(81)79029-3. [DOI] [PubMed] [Google Scholar]
  40. Takatsuki A., Tamura G. Brefeldin A, a specific inhibitor of intracellular translication of vesicular stomatitis virus G protein: intracellular accumulation of high mannose type G protein and inhibition of its cell surface expression. Agric. Biol. Chem. 1985;49:889–902. [Google Scholar]
  41. Tamura G., Ando K., Suzuki S., Takatsuki, Arita K. Antiviral activity of Brefeldin A and Verrucarin A. J. Antibiotic. 1968;26:160–161. doi: 10.7164/antibiotics.21.160. [DOI] [PubMed] [Google Scholar]
  42. Whealy M.E., Card J.P., Meade R.P., Robbins A.K., Enquist L.W. Effect of Brefeldin A on Alphaherpesvirus membrane protein glycosylation and virus egress. J. Virol. 1991;65:1066–1081. doi: 10.1128/jvi.65.3.1066-1081.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williams B.R.G., Golgher R.R., Brown R.E., Gilbert C.S., Kerr I.M. Natural occurence of2–5A in interferon-treated EMC virus infected L cells. Nature. 1979;282:582–586. doi: 10.1038/282582a0. [DOI] [PubMed] [Google Scholar]
  44. Wood S.A., Park J.E., Brown W.J. Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosome. Cell. 1991;67:591–600. doi: 10.1016/0092-8674(91)90533-5. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES